

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0566 of 10 August 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Wedge anchor ESSVE EST1 and EST1-IG

Torque controlled expansion anchor for use in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

Production plant no. 516

35 pages including 3 annexes which form an integral part of this assessment

European Assessment Document (EAD) 330232-00-0601

European Technical Assessment ETA-17/0566 English translation prepared by DIBt

Page 2 of 35 | 10 August 2017

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0566 English translation prepared by DIBt

Page 3 of 35 | 10 August 2017

Specific Part

1 Technical description of the product

The Wedge anchor ESSVE EST1 and EST1-IG is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type ESSVE EST1 with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type ESSVE EST1-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12.
- Anchor type ESSVE EST1-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type ESSVE EST1-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action for ESSVE EST1	See Annex C 1 to C 5
Characteristic resistance for seismic performance categories C1 and C2 for ESSVE EST1	See Annex C 6
Characteristic resistance for static and quasi static action for ESSVE EST1-IG	See Annex C 11 to C 13
Displacements under tension and shear loads for ESSVE EST1	See Annex C 9 to C 10
Displacements under tension and shear loads for ESSVE EST1-IG	See Annex C 15

European Technical Assessment ETA-17/0566

Page 4 of 35 | 10 August 2017

English translation prepared by DIBt

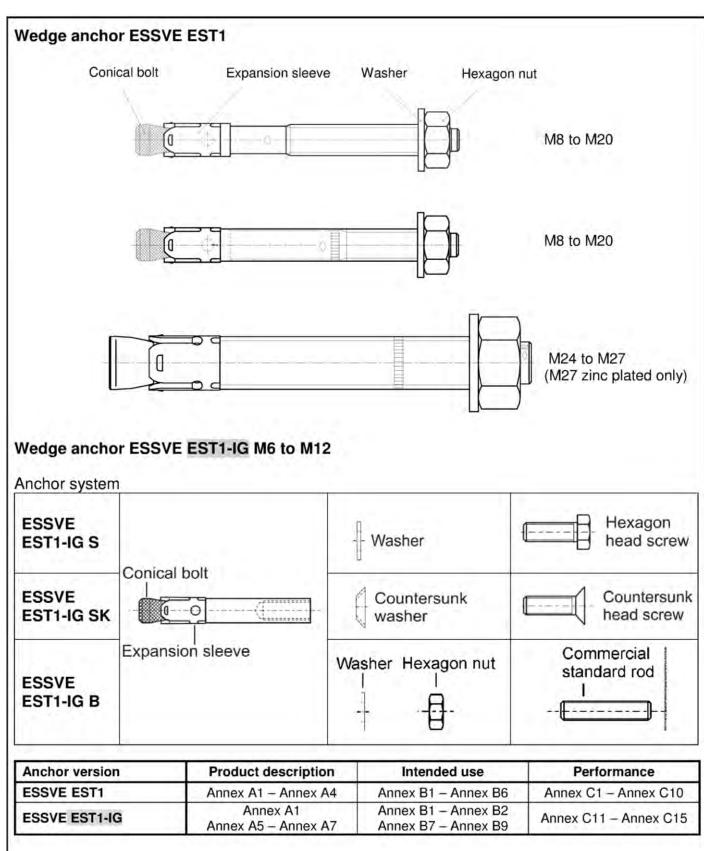
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire for ESSVE EST1	See Annex C 7 and C 8
Resistance to fire for ESSVE EST1-IG	See Annex C 14

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

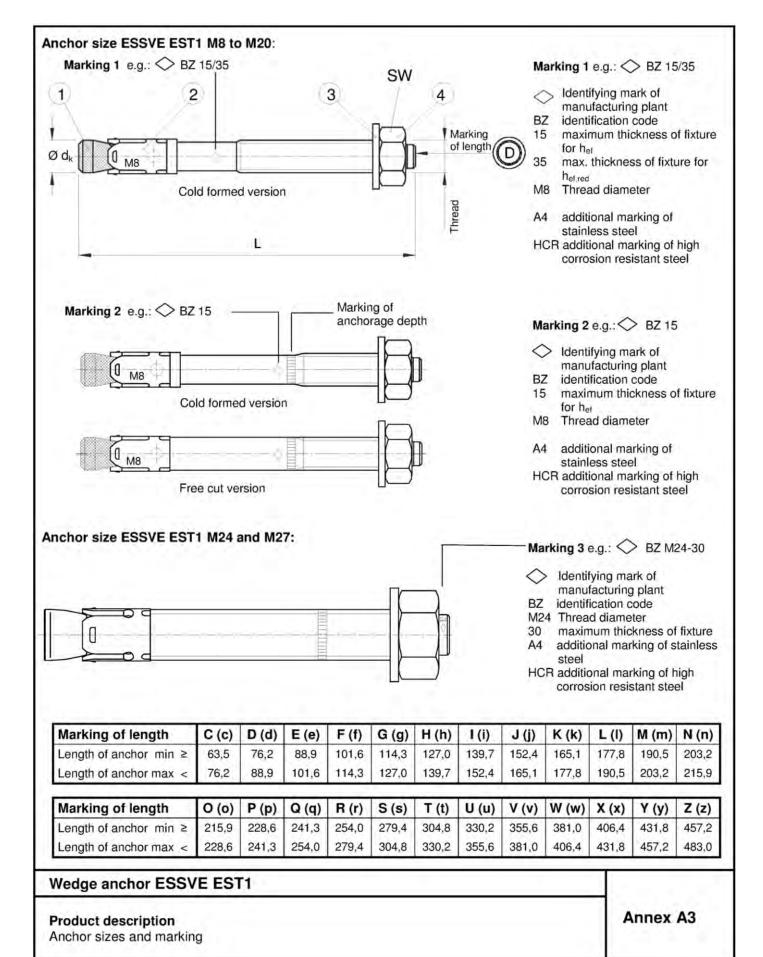
The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 10 August 2017 by Deutsches Institut für Bautechnik

Andreas Kummerow beglaubigt:
Head of Department Baderschneider



Annex A1

Intended use Wedge anchor ESSVE EST1 $h \ge h_{min,1}$ or $h_{min,2}$ h_1 hef t_{fix} σ Ø Concrete $h_{\text{ef,red}}$ t_{fix} $h_{1,red}$ $h \geq h_{\text{min},3}$ Wedge anchor ESSVE EST1 Annex A2 **Product description** Installation situation ESSVE EST1

Table A1: Anchor dimensions ESSVE EST1

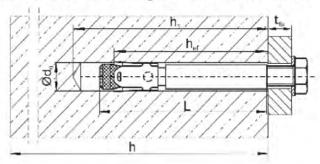
	Anchor	size		М8	M10	M12	M16	M20	M24	M27
1	Conical b	olt	Thread	M8	M10	M12	M16	M20	M24	M27
ı			Ø d _k =	7,9	9,8	12,0	15,7	19,7	24	28
ı	Longth	Steel, zinc plated	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	161+t _{fix}	178+t _{fix}
ı	Length of	A4, HCR	L	65 + t _{fix}	80 + t _{fix}	96,5+t _{fix}	118+t _{fix}	137+t _{fix}	168+t _{fix}	-
	anchor	reduced anchorage depth	$L_{hef,red}$	54 + t _{fix}	60 + t _{fix}	76,5+t _{fix}	98+t _{fix}	ı	ı	-
2	Expansio	n sleeve		see Table A2						
3	3 Washer					S	ee Table A	\2		
4	Hexagon nut SW			13	17	19	24	30	36	41

Dimensions in mm

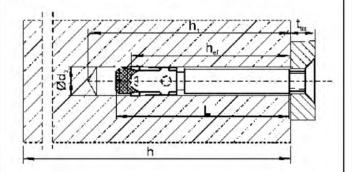
Table A2: Materials ESSVE EST1

		ESSV	E EST1	ESSVE EST1 A4	ESSVE EST1 HCR
No.	Part	Steel, zinc plated		Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	M8 to M20: Cold formed or machined steel, galvanised ≥ 5µm, Cone plastic coated	M10 to M20: Cold formed or machined steel, sherardized ≥ 40µm, Cone plastic coated	M8 to M20: Stainless steel (e.g. 1.4401, 1.4404, 1.4578, 1.4571) EN 10088:2014, Cone plastic coated	M8 to M20: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, Cone plastic coated
	Threaded bolt and threaded cone	M24 and M27: Steel, galvanised	_	M24: Stainless steel (e.g. 1.4401, 1.4404) EN 10088:2014	M24: High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014
2	Expansion sleeve	M8 to M20: Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401 M24 and M27: Steel acc. to EN 10139:1997	M10 to M20: Steel acc. to EN 10088:2014, material No. 1.4301 or 1.4401	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014
3	Washer	Steel, galvanised	Steel, mechanically galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014
4	Hexagon nut	Steel, galvanised, coated	Steel, hot dip galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel 1.4529 or 1.4565, EN 10088:2014, coated

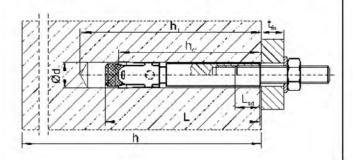
Wedge anchor ESSVE EST1	
Product description Dimensions and materials	Annex A4



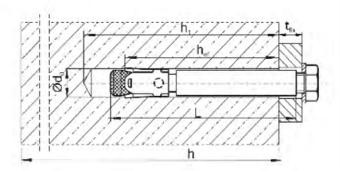
Intended use Wedge anchor ESSVE EST1-IG

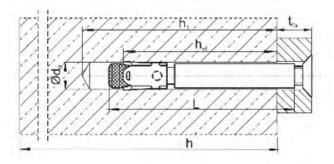

Installation type V pre-setting installation

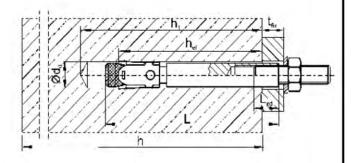
pre-set anchor body, the fixture bears on the screw or thread rod only


EST1-IG S consisting of EST1-IG and S-IG

EST1-IG SK consisting of EST1-IG and SK-IG




EST1-IG B consisting of EST1-IG and MU-IG



Installation type D through-setting installation

the anchor is set through the fixture, the fixture bears on the conical bolt EST1-IG

Wedge anchor ESSVE EST1-IG

Product description

Installation situation ESSVE EST1-IG

Annex A5

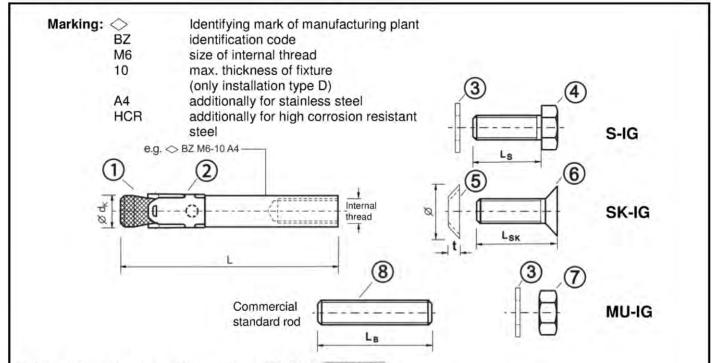


Table A3: Anchor dimensions ESSVE EST1-IG

No.	Anchor size		М6	M8	M10	M12
	Conical bolt with Internal thread		7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve			see ta	able A4	
3	Washer			see ta	able A4	
	Hexagon head scre	w width across flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D	L _S	14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk	Ø countersunk	17,3	21,5	25,9	30,9
5	washer	t	3,9	5,0	5,7	6,7
6	Countersunk bit size		Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socke 8 mm
	Installation type V	L _{SK}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D L _{SK}		16 to 20	20 to 25	25	30
7	Hexagon nut	width across flats	10	13	17	19
8	Commercial	type V L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
0	standard rod1)	type D L _B ≥	21	28	34	41

acc. to specifications (Table A4)

Dimensions in mm

Wedge anchor	ESSVE	EST1-	IG
--------------	-------	-------	----

Product description

Anchor parts, marking and dimensions

Annex A6

Table A4: Materials ESSVE EST1-IG

		ESSVE EST1-IG	ESSVE EST1-IG A4	ESSVE EST1-IG HCR
No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:1999	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt ESSVE EST1-IG with internal thread	Machined steel, Cone plastic coated	Stainless steel (e.g. 1.4401, 1.4404, 1.4571, 1.4362) EN 10088:2014, Cone plastic coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, Cone plastic coated
2	Expansion sleeve ESSVE EST1-IG	Stainless steel (e.g. 1.4301, 1.4401) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014
3	Washer S-IG / MU-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014
4	Hexagon head screw S-IG	Steel, galvanised, (e.g. 1.4401, 1.4571) coated EN 10088:2014, coated		High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
5	Countersunk washer SK-IG	Steel, galvanised	Stainless steel (e.g. 1.4401, 1.4404, 1.4571) EN 10088:2014, zinc plated, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
7	Hexagon nut MU-IG	Steel, galvanised coated	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, coated	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, coated
8	Commercial standard rod	Property class 8.8, EN ISO 898-1:2013 A ₅ > 8 % ductile	Stainless steel (e.g. 1.4401, 1.4571) EN 10088:2014, property class 70, EN ISO 3506:2009	High corrosion resistant steel, 1.4529, 1.4565, EN 10088:2014, property class 70, EN ISO 3506:2009

Wedge anchor ESSVE EST1-IG	
Product description Materials	Annex A7

Specifications of intended use

ESSVE EST1							
Standard anchorage depth	М8	M10	M12	M16	M20	M24	M27
Steel, galvanised		✓					
Steel, sherardized	-	- √ -					-
Stainless steel A4 and							
high corrosion resistant steel HCR	· -					_	
Static or quasi-static action		✓					
Fire exposure	✓						
Seismic action (C1 and C2) 1)	√						-
4)							

Reduced anchorage depth 1)	M8	M10	M12	M16
Steel, galvanised	√			
Steel, sherardized	- ✓			
Stainless steel A4 and				
high corrosion resistant steel HCR	•			
Static or quasi-static action	✓			
Fire exposure	✓			
Seismic action (C1 and C2)	-			

¹⁾ only cold formed anchors acc. to Annex A3

Wedge Anchor ESSVE EST1-IG	М6	M8	M10	M12
Steel zinc plated		•		
Stainless steel A4 and high corrosion resistant steel HCR		,	/	
Static or quasi-static action		٠	/	
Fire exposure		٧	/	
Seismic action (C1 and C2)			-	

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000
- · Cracked or non-cracked concrete

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (steel zinc plated, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

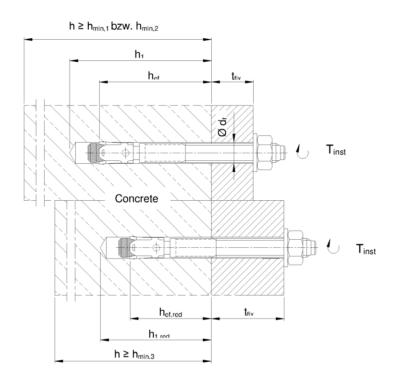
Wedge anchor ESSVE EST1 and ESSVE EST1-IG	
Intended use Specifications	Annex B1

Specifications of intended use

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Dimensioning of anchors under static or quasi-static effect, seismic influence or fire load according to FprEN 1992-4: 2016 in conjunction with TR 055.

Installation:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.

Wedge anchor ESSVE EST1 and ESSVE EST1-IG	
Intended use Specifications	Annex B2

Table B1: Installation parameters, ESSVE EST1

Anchor size				М8	M10	M12	M16	M20	M24	M27
Nominal drill I	hole diameter	d ₀	[mm]	8	10	12	16	20	24	28
Cutting diame	eter of drill bit	$d_{cut} \le$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	28,55
	Steel, galvanised	T_{inst}	[Nm]	20	25	45	90	160	200	300
Installation	Steel, sherardized	T_{inst}	[Nm]	-	22	40	90	160	-	-
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	290	-
Diameter of c hole in the fix		$d_{f} \leq$	[mm]	9	12	14	18	22	26	30
Standard anchorage depth										
Depth of	Steel, zinc plated	$h_1\geq$	[mm]	60	75	90	110	125	145	160
drill hole	Stainless steel A4, HCR	h₁ ≥	[mm]	60	75	90	110	125	155	-
Effective	Steel, zinc plated	h_{ef}	[mm]	46	60	70	85	100	115	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	125	-
Reduced anchorage depth										
Depth of drill hole $h_{1,red} \ge [mm]$		49	55	70	90					
Beduced effective anchorage		$h_{\text{ef,red}}$	[mm]	35	40	50	65	-	-	-

Wedge anchor ESSVE EST1	
Intended use Installation parameters	Annex B3

Table B2: Minimum	spacings and	edge distances.	standard anchorage	depth, ESSVE EST1

Anchor size			М8	M10	M12	M16	M20	M24	M27
Standard thickness of concret	e membe	r							
Steel zinc plated									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	170	200	230	250
Cracked concrete					•				
Minimum spacing	S _{min}	[mm]	40	45	60	60	95	100	125
	for c ≥	[mm]	70	70	100	100	150	180	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	180
	for s ≥	[mm]	80	90	140	180	200	220	540
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	45	60	65	90	100	125
	for c ≥	[mm]	80	70	120	120	180	180	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	180
	for $s \ge$	[mm]	100	100	150	150	240	220	540
Stainless steel A4, HCR									
Standard thickness of member	h _{min,1}	[mm]	100	120	140	160	200	250	-
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	60	60	95	125	
	for c ≥	[mm]	70	75	100	100	150	125	
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	125] -
	for s ≥	[mm]	80	90	140	180	200	125	
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	50	60	65	90	125	
	for c ≥	[mm]	80	75	120	120	180	125	_
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	125]
	for $s \ge$	[mm]	100	120	150	150	240	125	
Minimum thickness of concret	e membe	r							
Steel zinc plated, stainless ste	el A4, HC	R							
Minimum thickness of member	h _{min,2}	[mm]	80	100	120	140	-	-	-
Cracked concrete									
Minimum spacing	S _{min}	[mm]	40	45	60	70			
	for c ≥	[mm]	70	90	100	160			
Minimum edge distance	C _{min}	[mm]	40	50	60	80	_	-	-
	for s ≥	[mm]	80	115	140	180			
Non-cracked concrete									
Minimum spacing	S _{min}	[mm]	40	60	60	80			
	for c ≥	[mm]	80	140	120	180			
Minimum edge distance	C _{min}	[mm]	50	90	75	90	_	-	-
	for s ≥	[mm]	100	140	150	200			

Fire exposure from one side			
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature
Fire exposure from more than	one side		
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature
Minimum edge distance	C _{min,fi}	[mm]	≥ 300 mm

Intermediate values by linear interpolation.

Wedge anchor ESSVE EST1

Intended use

Minimum spacings and edge distances for standard anchorage depth

Annex B4

Table B3: Minimum spacings and edge distances, reduced anchorage depth, ESSVE EST1

Anchor size			М8	M10	M12	M16	
Minimum thickness of concrete member	$h_{\text{min},3}$	[mm]	80	80	100	140	
Cracked concrete							
Minimum spacing	S _{min}	[mm]	50	50	50	65	
Willimum spacing	for $c \ge$	[mm]	60	100	160	170	
Minimum edge distance	C _{min}	[mm]	40	65	65	100	
Millimum edge distance	for $s \ge$	[mm]	185	180	250	250	
Non-cracked concrete							
Minimum spacing	S _{min}	[mm]	50	50	50	65	
Willimum spacing	for $c \ge$	[mm]	60	100	160	170	
Minimum edge distance	C _{min}	[mm]	40	65	100	170	
Millimum edge distance	$for \ s \geq$	[mm]	185	180	185	65	
Fire exposure from one side							
Minimum spacing	S _{min,fi}	[mm]	Se	ee normal amb	ient temperatu	ire	
Minimum edge distance	C _{min,fi}	[mm]	See normal ambient temperature				
Fire exposure from more than one sid	е						
Minimum spacing	S _{min,fi}	[mm]	See normal ambient temperature				
Minimum edge distance	C _{min,fi}	[mm]		≥ 300) mm		

Intermediate values by linear interpolation.

Wedge anchor ES	SSVE	EST1
-----------------	------	------

Intended use

Minimum spacings and edge distances for reduced anchorage depth

Annex B5

Installation instructions ESSVE EST1

		•
1	90°	Drill hole perpendicular to concrete surface.
2		Blow out dust. Alternatively vacuum clean down to the bottom of the hole.
3		Check position of nut.
4		Drive in anchor, such that h _{ef} or h _{ef,red} depth is met. This compliance is ensured, if the thickness of fixture is not greater than the maximum thickness of fixture marked on the anchor in accordance with Annex A3.
5	T _{INST}	Max. tightening torque T _{inst} shall be applied by using calibrated torque wrench.

Wedge anchor ESSVE EST1	
Intended Use Installation instructions	Annex B6

Table B4: Installation parameters ESSVE EST1-IG

Anchor size				М6	М8	M10	M12
Effective anchorage depth		h _{ef}	[mm]	45	58	65	80
Drill hole diameter		d_0	[mm]	8	10	12	16
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		$h_1 \ge$	[mm]	60	75	90	105
Screwing depth of threaded rod		$L_{sd}^{2)} \ge$	[mm]	9	12	15	18
landa llatina anno an		S	[Nm]	10	30	30	55
· · · · · · · · · · · · · · · · · · ·	T _{inst}	SK	[Nm]	10	25	40	50
steel zilic plated		В	[Nm]	8	25	30	45
London Hollon Community		S	[Nm]	15	40	50	100
,	T _{inst}	SK	[Nm]	12	25	45	60
Stanliess steel A4, HON		В	[Nm]	8	25	40	80
Installation type V (Pre-setting in	stallation)						
Diameter of clearance hole in the fi	xture	$d_f \le$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
epth of drill hole crewing depth of threaded rod stallation moment, eel zinc plated stallation moment, ainless steel A4, HCR stallation type V (Pre-setting installation type V (Pre-setting installation type V) community in the fixture stallation type D (Through-setting ameter of clearance hole in the fixture) stallation type D (Through-setting ameter of clearance hole in the fixture)	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm] 8 10 12 [mm] 8,45 10,45 12,5 [mm] 60 75 90 [mm] 9 12 15 [Nm] 10 30 30 [Nm] 10 25 40 [Nm] 8 25 30 [Nm] 15 40 50 [Nm] 12 25 45 [Nm] 8 25 40 [mm] 7 9 12 [mm] 1 1 1	1			
Installation type D (Through-setti	ng installa	ation)					
Diameter of clearance hole in the fi	xture	$d_f \leq$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	t _{fix} ≥	SK	[mm]	9	12	14	16
		В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm.
²⁾ see Annex A5

Table B5: Minimum spacings and edge distances ESSVE EST1-IG

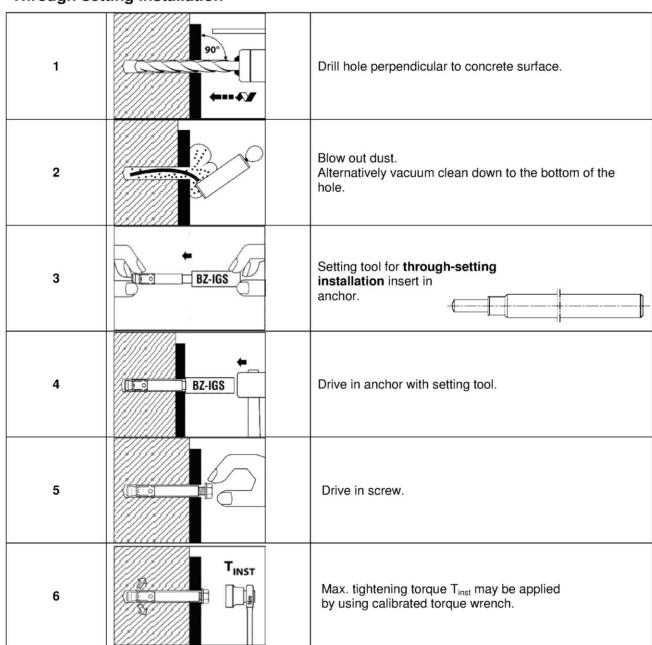
Anchor size			М6	M8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	for c ≥	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
on-cracked concrete linimum spacing	for s ≥	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	for c ≥	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	for s ≥	[mm]	115	155	170	210
Fire exposure from one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature)
Minimum edge distance	C _{min,fi}	[mm]		See normal	temperature)
Fire exposure from more than one side						
Minimum spacing	S _{min,fi}	[mm]		See normal	temperature)
Minimum edge distance	C _{min,fi}	[mm]		≥ 300	0 mm	
Intermediate values by linear interpolation.						

Wedge anchor ESSVE EST1-IG

Intended use

Installation parameters, minimum spacings and edge distances

Annex B7


Installation instructions ESSVE EST1-IG Pre-setting installation 1 Drill hole perpendicular to concrete surface. Blow out dust. 2 Alternatively vacuum clean down to the bottom of the hole. Setting tool for pre-setting installation insert in anchor. Drive in anchor with setting tool. 5 Drive in srew. Tinst Max. tightening torque T_{inst} may be applied by using calibrated torque wrench.

Wedge anchor ESSVE EST1-IG	
Intended Use	Annex B8
Installation instructions for pre-setting installation	

Installation instructions ESSVE EST1-IG

Through-setting installation

Wedge anchor ESSVE ES) I T-IC	à
-----------------------	----------	---

Intended Use

Installation instructions for through-setting installation

Annex B9

Table C1: Characteristic values for **tension loads** ESSVE EST1 **zinc plated**, **cracked concrete**, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24	M27
Installation safety factor	γ _{inst}	[-]				1,0			
Steel failure									
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γ_{Ms}	[-]	1,53		1	,5 1,6		1,5	
Pull-out					-		-	-	
Standard anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-	-
Increasing factor for $N_{\text{Rk},p}$	ψс	[-]				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth	$h_{\text{ef,red}}$	[mm]	35 ²⁾	40	50	65	-	-	-
Factor k ₁ for cracked concrete	k _{cr,N}	[-]				7,7			

¹⁾ Pull-out is not decisive.

Wedge anchor ESSVE EST1

Performance

Characteristic values for **tension loads**, **ESSVE EST1 zinc plated**, **cracked concrete**, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C2: Characteristic values for **tension loads**, ESSVE EST1 **A4** / **HCR**, **cracked concrete**, static and quasi-static action

Anchor size			М8	M10	M12	M16	M20	M24
Installation safety factor	γ̃inst	[-]				1,0		
Steel failure								
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γмѕ	[-]	1,5				1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in concrete C20/25	$N_{\text{Rk},p}$	[kN]	5	9	16	25	1)	40
Reduced anchorage depth								
Characteristic resistance in concrete C20/25	$N_{Rk,p}$	[kN]	5	7,5	1)	1)	-	-
Increasing factor for N _{Rk,p}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65	-	-
Factor k ₁ for cracked concrete	k _{cr,N}	[-]			7	7,7		

¹⁾ Pull-out is not decisive.

Wedge anchor ESSVE EST1

Performance

Characteristic values for **tension loads**, **ESSVE EST1 A4 / HCR**, **cracked concrete**, static and quasi-static action

²⁾ Use restricted to anchoring of structural components statically indeterminate.

Table C3: Characteristic values for tension loads, ESSVE EST1 zinc plated, non-cracked concrete, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24	M27
Installation safety factor	Yinst	[-]				1,0			
Steel failure	, ,1101								
Characteristic tension resistance	N _{Rk,s}	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1	,5	1,6	1	,5
Pull-out	1110								
Standard anchorage depth					1,				
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	-1)	1)	1)
Reduced anchorage depth									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	7,5	9	1)	1)	Tell	1/2	14
Splitting									
Standard anchorage depth									
Splitting for standard thickness of the values s _{cr,sp} and c _{cr,sp} may be linearly									
Standard thickness of concrete	h _{min,1} ≥	[mm]	100	120	140	170	200	230	250
Case 1									
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	.9	12	20	30	40	62,3	50
Spacing (edge distance)	Ccr.sp	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	50,5	62,3	70,6
Spacing (edge distance)	Ccr.sp	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _e
Splitting for minimum thickness of	concrete	membe	er						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140			
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12	16	25	35	-2	7	12
Spacing (edge distance)	Ccr,sp	[mm]		2,5	h _{ef}				
Reduced anchorage depth									
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140			
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	7,5	9	17,9	26,5	2.5	7	ex.
Spacing (edge distance)	Ccr.sp	[mm]	100	100	125	150			
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	77.7				$\left(\frac{f_{ck}}{20}\right)^{0.5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Reduced anchorage depth		[mm]	35 ²⁾	40	50	65	-6-1	15.	9.7
Factor k ₁ for non-cracked concrete	k _{ucr,N}	7.0				11,0			

¹⁾ Pull-out is not decisive.

Wedge anchor ESSVE EST1

Performance

Characteristic values for tension loads, ESSVE EST1 zinc plated, non-cracked concrete, static and quasi-static action

Use restricted to anchoring of structural components statically indeterminate.

Table C4: Characteristic values for tension loads, ESSVE EST1 A4 / HCR, non-cracked concrete, static and quasi-static action

Anchor size			M8	M10	M12	M16	M20	M24
Installation safety factor	Yinst	[-]			1	,0		
Steel failure	1							
Characteristic tension resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	110
Partial safety factor	γMs	[-]		1.	5	1	1,68	1,5
Pull-out								
Standard anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	1)	1)
Reduced anchorage depth								
Characteristic resistance in non-cracked concrete C20/25	N _{Hk,p}	[kN]	7,5	9	1)	1)	7	2
Splitting								
Standard anchorage depth								
Splitting for standard thickness of co the values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly in								d;
Standard thickness of concrete	h _{min.1} ≥	[mm]	100	120	140	160	200	250
Case 1								
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9	12	20	30	40	7-
Spacing (edge distance)	Ccr.sp	[mm]			1,5	h _{ef}		
Case 2				9 3				
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	12	16	25	35	50,5	70,6
Spacing (edge distance)	Ccr,sp	[mm]	115	125	140	200	220	250
Splitting for minimum thickness of co	oncrete me	mber						
Minimum thickness of concrete	h _{min,2} ≥	[mm]	80	100	120	140		
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	12	16	25	35	4.	
Spacing (edge distance) s _{cr.si}	(= 2 c _{cr.sp})	[mm]		5	hel			
Reduced anchorage depth								
Minimum thickness of concrete	h _{min,3} ≥	[mm]	80	80	100	140	1 1	
Characteristic resistance in non-cracked concrete C20/25	$N^0_{Rk,sp}$	[kN]	7,5	9	17,9	26,5		-
Spacing (edge distance)	Ccr.sp	[mm]	100	100	125	150		
Increasing factor for N _{Rk,p} and N ⁰ _{Rk,sp}	ψс	[-]			$\left(\frac{f_{ck}}{20}\right)$	0,5		
Concrete cone failure								
Effective anchorage depth	h _{et}	[mm]	46	60	70	85	100	125
Reduced anchorage depth	h _{ef,red}	[mm]	35 ²⁾	40	50	65		LR
Factor k ₁ for non-cracked concrete	k _{ucr,N}	[-]				,0		

¹⁾ Pull-out is not decisive.

Wedge anchor ESSVE EST1

Performance

Characteristic values for tension loads, ESSVE EST1 A4 / HCR, non-cracked concrete, static and quasi-static action

Use restricted to anchoring of structural components statically indeterminate.

Table C5: Characteristic values for **shear loads**, ESSVE EST1, **cracked** and **non-cracked concrete**, static or quasi static action

Anchor size				M8	M10	M12	M16	M20	M24	M27
Installation safety fa	actor	γ_{inst}	[-]				1,0			
Steel failure withou	ut lever arm, Steel	zinc pla	ated							
Characteristic shea	r resistance	$V_{Rk,s}$	[kN]	12,2	20,1	30	55	69	114	169,4
Factor for ductility		k_7	[-]	1,0						
Partial safety factor		γ_{Ms}	[-]		1,	25		1,33	1,25	1,25
Steel failure withou	ut lever arm, Stain	less ste	el A4, l	HCR						
Characteristic shea	r resistance	$V_{Rk,s}$	[kN]	13	20	30	86	123,6		
Factor for ductility		k_7	[-]						-	
Partial safety factor		γ_{Ms}	[-]		1,	25		1,4	1,25	
Steel failure with le	ever arm, Steel zin	c plated	I							
Characteristic bend	ing resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	216	363	898	1331,5
Partial safety factor	1		[-]		1,	25		1,33	1,25	1,25
Steel failure with le	ever arm, Stainles:	s steel A	4, HCF	₹						
Characteristic bend	ing resistance	$M^0_{Rk,s}$	[Nm]	26	26 52 92 200		200	454	785,4	
Partial safety factor		γ̃Ms	[-]		1,	25	1,4	1,25	_	
Concrete pry-out f	ailure									
Factor		k ₈	[-]		2,	4			2,8	
Concrete edge fail	ure									
Effective length of	Steel zinc plated	I_{f}	[mm]	46	60	70	85	100	115	125
anchor in shear loading with h ef	Stainless steel A4, HCR	l _f	[mm]	46	60	70	85	100	125	-
Effective length of anchor in shear	Steel zinc plated	$I_{\rm f,red}$	[mm]	35 ¹⁾	40	50	65			
loading with h _{ef,red}	Stainless steel A4, HCR	$I_{f,red}$	[mm]	35 ¹⁾	40	50	65	_	-	-
Outside diameter of	anchor	d_{nom}	[mm]	8	10	12	16	20	24	27

¹⁾ Use restricted to anchoring of structural components statically indeterminate.

Wedge anchor ESSVE EST1 Performance Characteristic values for shear loads, ESSVE EST1, cracked and non-cracked concrete, static or quasi static action Annex C5

Table C6: Characteristic resistance for seismic loading, ESSVE EST1 standard anchorage depth, performance category C1 and C2

Anchor size		М8	M10	M12	M16	M20
Tension loads		1	<u>'</u>			<u>'</u>
Installation safety factor	γ _{inst} [-]			1,0		
Steel failure, Steel zinc plate	ed					
Characteristic resistance C1	N _{Rk,s,eq,C1} [kN]	16	27	40	60	86
Characteristic resistance C2	N _{Rk,s,eq,C2} [kN]	16	27	40	60	86
Partial safety factor	γ _{Ms} [-]	1	,53	1	,5	1,6
Steel failure, Stainless steel	A4, HCR					
Characteristic resistance C1	N _{Rk,s,eq,C1} [kN]	16	27	40	64	108
Characteristic resistance C2	N _{Rk,s,eq,C2} [kN]	16	27	40	64	108
Partial safety factor	γ _{Ms} [-]		1,	,5		1,68
Pull-out (steel zinc plated, sta	ainless steel A4 a	and HCR)				
Characteristic resistance C1	N _{Rk,p,eq,C1} [kN]	5	9	16	25	36
Characteristic resistance C2	N _{Rk,p,eq,C2} [kN]	2,3	3,6	10,2	13,8	24,4
Shear loads						
Steel failure without lever a	rm, Steel zinc p	ated				
Characteristic resistance C1	V _{Rk,s,eq,C1} [kN]	9,3	20	27	44	69
Characteristic resistance C2	V _{Rk,s,eq,C2} [kN]	6,7	14	16,2	35,7	55,2
Partial safety factor	γ _{Ms} [-]		1,	25		1,33
Steel failure without lever a	rm, Stainless st	eel A4, HCR				
Characteristic resistance C1	V _{Rk,s,eq,C1} [kN]	9,3	20	27	44	69
Characteristic resistance C2	V _{Rk,s,eq,C2} [kN]	6,7	14	16,2	35,7	55,2
Partial safety factor	γ _{Ms} [-]		1,	25		1,4

Performance

Characteristic resistance for **seismic loading**, ESSVE EST1, **standard anchorage depth**, performance category **C1** and **C2**

Table C7: Characteristic values **for tension and shear load** under **fire exposure**, ESSVE EST1, **standard anchorage depth**, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				M8	M10	M12	M16	M20	M24	M27									
Tension load				10.00			13000		1										
Steel failure																			
Steel, galvanise	ed																		
	R30		- = - []	1,5	2,6	4,1	7,7	9,4	13,6	17,6									
Characteristic	R60		nan l	1,1	1,9	3,0	5,6	8,2	11,8	15,3									
resistance	R90	N _{Rk,s,fi}	[kN]	0,8	1,4	2,4	4,4	6,9	10,0	13,0									
	R120			0,7	1,2	2,2	4,0	6,3	9,1	11,8									
Stainless steel	A4, HCR																		
	R30			3,8	6,9	12,7	23,7	33,5	48,2										
Characteristic	R60			2,9	5,3	9,4	17,6	25,0	35,9										
resistance	R90	- N _{Rk,s,li}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6	8									
	R120			1,6	2,8	4,5	8,4	12,1	17,4										
Shear load																			
Steel failure wit	thout lever a	ırm																	
Steel, galvanise	ed																		
	R30			1,6	2,6	4,1	7,7	11	16	20,6									
Characteristic	R60		65.5	1,5	2,5	3,6	6,8	-11	15	19,8									
resistance	R90	- V _{Rk,s,fi}	[kN]	1,2	2,1	3,5	6,5	10	15	19,0									
	R120			1,0	2,0	3,4	6,4	10	14	18,6									
Stainless steel	A4, HCR																		
	R30												3,8	6,9	12,7	23,7	33,5	48,2	
Characteristic	R60		200	2,9	5,3	9,4	17,6	25,0	35,9	-									
resistance	R90	- V _{Rk,s,fi}	[kN]	2,0	3,6	6,1	11,5	16,4	23,6										
	R120			1,6	2,8	4,5	8,4	12,1	17,4										
Steel failure wit	91.10.02		1																
Steel, galvanise	7. 341130 B 7 7																		
,	R30			1,7	3,3	6,4	16,3	29	50	75									
Characteristic	R60		J. 1	1,6	3,2	5,6	14	28	48	72									
resistance	R90	− M ⁰ _{Rk,s,fi}	[Nm]	1,2	2,7	5,4	14	27	47	69									
	R120			1,1	2,5	5,3	13	26	46	68									
Stainless steel																			
	R30			3,8	9,0	19,7	50,1	88,8	153,5	-									
Characteristic	R60	- 0	0.50.50	2,9	6,8	14,6	37,2	66,1	114,3										
Characteristic resistance	R60 R90	− M ⁰ _{Rk,s,fi}	[Nm]	2,1	4,7	9,5	24,2	43,4	75,1	- 5									
	R120			1,6	3,6	7,0	17,8	32,1	55,5										

If pull-out is not decisive in equation D4 and D5, FprEN 1992-4:2016 $N_{Rk,p}$ must be replaced by $N_{Rk,c}^0$.

Wedge anchor ESSVE EST1

Performance

Characteristic values for tension and shear load under fire exposure, ESSVE EST1, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Table C8: Characteristic values **for tension and shear load** under **fire exposure**, ESSVE EST1, **reduced anchorage depth**, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				M8	M10	M12	M16
Tension load							
Steel failure							
Steel, galvanised							
	R30			1,5	2,6	4,1	7,7
Characteristic	R60	N	[LAN]]	1,1	1,9	3,0	5,6
resistance	R90	- N _{Rk,s,fi}	[kN]	0,8	1,3	1,9	3,5
	R120			0,6	1,0	1,3	2,5
Stainless steel A4,	HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FL-N 17	2,5	5,3	9,4	17,6
resistance	R90	- N _{Rk,s,fi}	[kN]	1,9	3,6	6,1	11,5
	R120	_		1,6	2,8	4,5	8,4
Shear load							
Steel failure withou	ut lever arm						
Steel, galvanised							
	R30		s,fi [kN]	1,5	2,6	4,1	7,7
Characteristic	R60			1,1	1,9	3,0	5,6
resistance	R90	$$ $V_{Rk,s,fi}$		0,8	1,3	1,9	3,5
	R120	_		0,6	1,0	1,3	2,5
Stainless steel A4,	HCR						
	R30			3,2	6,9	12,7	23,7
Characteristic	R60		FL-N 17	2,5	5,3	9,4	17,6
resistance	R90	$$ $V_{Rk,s,fi}$	[kN]	1,9	3,6	6,1	11,5
	R120	_		1,6	2,8	4,5	8,4
Steel failure with le	ever arm						
Steel, galvanised							
	R30			1,5	3,3	6,4	16,3
Characteristic	R60		[NI1	1,2	2,5	4,7	11,9
resistance	R90	— M ⁰ _{Rk,s,fi}	[Nm]	0,8	1,7	3,0	7,5
	R120	_		0,6	1,2	2,1	5,3
Stainless steel A4,	HCR						
	R30			3,2	8,9	19,7	50,1
Characteristic	R60		[NI1	2,6	6,8	14,6	37,2
resistance	R90	— M ⁰ _{Rk,s,fi}	[Nm]	2,0	4,7	9,5	24,2
	R120	_		1,6	3,6	7,0	17,8

If pull-out is not decisive in equation D4 and D5, FprEN 1992-4:2016 N_{Rk,p} must be replaced by N⁰_{Rk,c}.

Wedge anchor ESSVE EST1

Performance

Characteristic values for tension and shear load under fire exposure, ESSVE EST1, reduced anchorage depth, cracked and non-cracked concrete C20/25 to C50/60

Table C9:	Displacements under tension load, ESSVE EST1

Anchor size			М8	M10	M12	M16	M20	M24	M27
Standard anchorage depth									
Steel zinc plated									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	0,9
	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	0,3
	$\delta_{N^{\infty}}$	[mm]	0,	,8	1,4		0,8		1,4
Displacements under seismic tension loa	ads C2								
Displacements for DLS	$\delta_{\text{N,eq,(DLS)}}$	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	_	_
Stainless steel A4, HCR									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	19,0	
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	-
	$\delta_{N^{\infty}}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,8	
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	33,5	
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	0,5	-
	$\delta_{N^{\infty}}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1]
Displacements under seismic tension loa	ads C2								
Displacements for DLS	$\delta_{N,\text{eq}(\text{DLS})}$	[mm]	2,3	4,1	4,9	3,6	5,1		
Displacements for ULS	$\delta_{\text{N,eq(ULS)}}$	[mm]	8,2	13,8	15,7	9,5	15,2	_	_
Reduced anchorage depth									
Steel zinc plated, stainless steel A4, H	ICR								
Tension load in cracked concrete	N	[kN]	2,4	3,6	6,1	9,0			
Displacement	δ_{N0}	[mm]	0,8	0,7	0,5	1,0	-	-	-
	$\delta_{N_{\infty}}$	[mm]	1,2	1,0	0,8	1,1			
Tension load in non-cracked concrete	N	[kN]	3,7	4,3	8,5	12,6			
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	-	-	-
	$\delta_{N^{\infty}}$	[mm]	0,7	0,7	0,7	0,7	1		

Wedge anchor E	SSVE EST1
----------------	-----------

Performance

Displacements under tension load

Table C10:	Displacements under shear load, ESSVE EST1

Anchor size			M8	M10	M12	M16	M20	M24	M27
Standard anchorage dept	h								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	٧	[kN]	6,9	11,4	17,1	31,4	36,8	64,9	96,8
Displacement	δ_{V0}	[mm]	2,0	3,2	3,6	3,5	1,8	3,5	3,6
	$\delta_{V\omega}$	[mm]	3,0	4,7	5,5	5,3	2,7	5,3	5,4
Displacements under seismi	ic shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1		
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	٧	[kN]	7,3	11,4	17,1	31,4	43,8	70,6	
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3	2,9	2,8	- 0
	$\delta_{V_{20}}$	[mm]	2,9	3,6	5,9	6,4	4,3	4,2	
Displacements under seismi	ic shear loa	ds C2							
Displacements for DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	3,0	2,7	3,5	4,3	4,7		
Displacements for ULS	$\delta_{\text{V,eq(ULS)}}$	[mm]	5,9	5,3	9,5	9,6	10,1	1 21	
Reduced anchorage dept	h								
Steel zinc plated									
Shear load in cracked and non-cracked concrete	V	[kN]	6,9	11,4	17,1	31,4			
Displacement	δνο	[mm]	2,0	3,2	3,6	3,5	1.5	0-10	:÷(
	δ _V	[mm]	3,0	4,7	5,5	5,3			
Stainless steel A4, HCR									
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,4	17,1	31,4			
Displacement	δ_{V0}	[mm]	1,9	2,4	4,0	4,3		-	
	$\delta_{V\infty}$	[mm]	2,9	3,6	5,9	6,4			

Wedge anchor	ESSVE EST1
--------------	-------------------

Performance

Displacements under shear load

Table C11: Characteristic values for tension loads, ESSVE EST1-IG, cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12
Installation safety factor	γinst	[-]		1,	2	•
Steel failure						
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	γMs	[-]		1	,5	
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	γMs	[-]	1,87			
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20
Increasing factor for N _{Rk,p}	ψс	[-]		$\left(\frac{f_{ck}}{20}\right)$	0,5	
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor k ₁ for cracked concrete	k _{cr,N}	[-]		7	,7	

Wedge	anchor	ESSVE	FST1	-IG
WEUGE	ancio			-10

Performance

Characteristic values for tension loads, ESSVE EST1-IG, cracked concrete, static and quasi-static action

Table C12: Characteristic values for **tension loads**, **ESSVE EST1-IG**, **non-cracked concrete**, static and quasi-static action

Anchor size			М6	М8	M10	M12
Installation safety factor	γinst	[-]		1,	2	
Steel failure						
Characteristic tension resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	γMs	[-]		1	,5	
Characteristic tension resistance, stainless steel A4, HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	γ̃Ms	[-]		1,	87	
Pull-out						
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Splitting (The higher resistance of Case 1 ar	nd Case 2 n	nay be app	olied)			
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Case 1						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	9	12	16	25
Spacing (edge distance)	Ccr,sp	[mm]		1,5	h _{ef}	
Case 2						
Characteristic resistance in non-cracked concrete C20/25	$N^0_{\ Rk,sp}$	[kN]	12	16	20	30
Spacing (edge distance)	Ccr,sp	[mm]		2,5	h _{ef}	
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}^0$	ψс	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$			
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	45	58	65	80
Factor k ₁ for non-cracked concrete	k _{ucr,N}	[-]	11,0			

Wedge	anchor	ESSVE	FST1	-IG
WEUGE	ancio			-10

Performance

Characteristic values for **tension loads**, **ESSVE EST1-IG**, **non-cracked concrete**, static and quasi-static action

Table C13: Characteristic values for shear loads, ESSVE EST1-IG, cracked and non-cracked concrete, static and quasi-static action

Anchor size			М6	М8	M10	M12
Installation safety factor	γ _{inst}	[-]		1	,0	
ESSVE EST1-IG, steel zinc plated						
Steel failure without lever arm, Installatio	n type V					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Installatio	n type D					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Installation ty						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Installation ty	pe D					•
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial safety factor for V _{Rk,s} and M ⁰ _{Rk,s}	γ _{Ms}	[-]		1,	25	
Factor of ductility	k ₇	[-]		1	,0	
ESSVE EST1-IG, stainless steel A4, HCR						
Steel failure without lever arm, Installatio	n type V					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial safety factor	γMs	[-]		1,	25	
Steel failure without lever arm, Installatio	n type D					
Characteristic shear resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial safety factor	γMs	[-]		1,	25	
Steel failure with lever arm, Installation ty	rpe V					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,7	26,2	52,3	91,6
Partial safety factor	γMs	[-]		1,	56	
Steel failure with lever arm, Installation ty	•					
Characteristic bending resistance	${\sf M^0}_{\sf Rk,s}$	[Nm]	28,2	44,3	69,9	191,2
Partial safety factor	γMs	[-]		1,	25	
Factor of ductility	k_7	[-]		1,	0	
Concrete pry-out failure						
Factor	k ₈	[-]	1,5	1,5	2,0	2,0
Concrete edge failure						
Effective length of anchor in shear loading	I _f	[mm]	45	58	65	80
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16

Wedge	anchor	ESSVE	FST1	-IG
WEUGE	ancio			-10

Performance

Characteristic values for shear loads, ESSVE EST1-IG cracked and non-cracked concrete, static and quasi-static action

Table C14: Characteristic values for tension and shear load under fire exposure, ESSVE EST1-IG, cracked and non-cracked concrete C20/25 to C50/60

Anchor size				M6	M8	M10	M12
Tension load							
Steel failure							
Steel zinc plated							
	R30	1		0,7	1,4	2,5	3,7
Characteristic	R60	NI .	[kN]	0,6	1,2	2,0	2,9
resistance	R90	N _{Rk,s,fi}		0,5	0,9	1,5	2,2
	R120			0,4	8,0	1,3	1,8
Stainless steel /	A4, HCR						
	R30		[kN]	2,9	5,4	8,7	12,6
Characteristic	R60	M		1,9	3,8	6,3	9,2
resistance	Hau	V _{Rk,s,fi}		1,0	2,1	3,9	5,7
7 00 40 10	R120			0,5	1,3	2,7	4,0
Shear load							
Steel failure with	nout lever arm						
Steel zinc plated	1						
	R30		[kN]	0,7	1,4	2,5	3,7
Characteristic	R60			0,6	1,2	2,0	2,9
resistance	R90	V _{Rk.s.fi}		0,5	0,9	1,5	2,2
	R120			0,4	0,8	1,3	1,8
Stainless steel	A4, HCR						
	R30	1	(CA)	2,9	5,4	8,7	12,6
Characteristic	R60			1,9	3,8	6,3	9,2
resistance	neu	V _{Rk.s,li}	[kN]	1,0	2,1	3,9	5,7
	R120		1 - 4	0,5	1,3	2,7	4,0
Steel failure with	n lever arm						
Steel zinc plated							
	R30		[Nm]	0,5	1,4	3,3	5,7
Characteristic	R60	A ^O Rk,s,fi		0,4	1,2	2,6	4,6
resistance	R90	Rk.s.fi		0,4	0,9	2,0	3,4
	R120	-		0,3	0,8	1,6	2,8
Stainless steel	A4, HCR						
	R30		[Nm]	2,2	5,5	11,2	19,6
Characteristic	R60	A ⁰ Fik.s.fi		1,5	3,9	8,1	14,3
resistance	R90	Hk,s,fi		0,7	2,2	5,1	8,9
	R120			0,4	1,3	3,5	6,2

Wedge anchor	FSSVF	FST1	-IG
Wedde anchol		LOII	-10

Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **ESSVE EST1-IG** cracked and non-cracked concrete C20/25 to C50/60

Table C15: Displacements under tension load, ESSVE EST1-IG

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Dienlagamenta	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Displacements	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Dienlagamenta	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
Displacements	$\delta_{N^{\infty}}$	[mm]	0,8	0,8	1,2	1,4

Table C16: Displacements under shear load, ESSVE EST1-IG

Anchor size		М6	М8	M10	M12	
Shear load in cracked concrete	٧	[kN]	4,2	5,3	6,2	16,9
Diaplacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
Displacements	$\delta_{V^{\infty}}$	[mm]	4,2	4,4	3,8	5,3

Wedge anchor ESSVE EST1-IG

Annex C15

PerformanceDisplacements under tension load and under shear load