

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0440 of 9 November 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE concrete screw EUS2 A4, EUS2 HCR

Mechanical fasteners for use in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant no. 676

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-22/0440

Page 2 of 19 | 9 November 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0440

Page 3 of 19 | 9 November 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The ESSVE concrete screw EUS2 A4, EUS2 HCR is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C1	See Annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

European Technical Assessment ETA-22/0440

Page 4 of 19 | 9 November 2022

English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

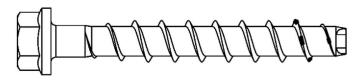
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

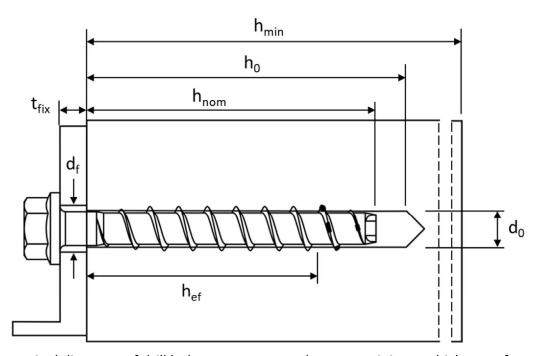
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 9 November 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock

Head of Section


beglaubigt:
Tempel


Product in installed condition

ESSVE concrete screw EUS2 A4, EUS2 HCR

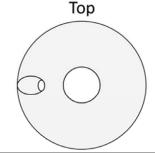
- stainless steel A4
- high corrosion resistant steel HCR

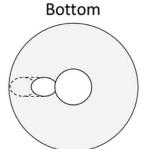
e.g. ESSVE concrete screw with hexagon head and fixture

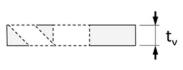
 d_0 = nominal diameter of drill hole

t_{fix} = thickness of fixture

d_f = diameter of clearance hole


h_{min} = minimum thickness of member


h_{nom} = nominal embedment depth


h₀ = depth of drill hole

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

ESSVE concrete screw EUS2 A4, EUS2 HCR

Product description

Product in installed condition

Annex A1

Product descri			Annex A2
ESSVE concrete	screw EUS2 A4, EU	JS2 HCR	
		Version with internal thread and he e.g. EUS2-I 6x55 M8/M10	exagon drive
		Version with hexagon drive and core.g. EUS2-E6 6x55 M8 SW10	nnection thread
		Version with countersunk head and e.g. EUS2-E6 6x55 M8	l connection thread
	(SM) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Version with large pan head and TC e.g. EUS2-PL 8x80 TX40	PRX drive
	(154) (2) - 0-)	Version with pan head and TORX doe.g. EUS2-PS 8x80 TX40	rive
	(154) (0) (0)	Version with countersunk head and e.g. EUS2-C 8x80 TX40	l TORX drive
	(SA)	Version with hexagon head e.g. EUS2-H 8x80 SW13	
	(154) (2) (2)	l and TORX drive	
	00,00	Version with washer and hexagon he.g. EUS2-HF 8x80 SW13	nead
	0	Version with metric connection thr drive e.g. EUS2-E 8x105 M10 SW7	ead and hexagon

_		le 1:	B 4		
12	n	יו בו	- I\ /I	210	rial
10		L .	. I V I	a	ııaı

1 01010 21 1110								
Part	Product name		Material					
all turns as	EUS2 A4	1.4401; 1.4404; 1.4	4571; 1.4578					
all types	EUS2 HCR	1.4529						
		Nominal characteristic steel Rupture						
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]				
all types	EUS2 A4	560	700	≤8				
all types	EUS2 HCR	300	560 700					

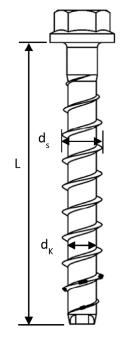
Table 2: Dimensions

Anchor size	6				8		10					
		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3	
		[mm]	35	45	55	45	55	65	55	75	85	
Screw length	≤L	[mm]		500								
Core diameter	dĸ	[mm]		5,1		7,2			9,2			
Thread outer diameter	d _s	[mm]		7,6		10,5			12,5			
Thickness of filling washer	t _v	[mm]		5			5			5		

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Marking:

EUS2 A4


Identification code:TSMScrew size:10Screw length:100Material:A4

Identification code:TSMScrew size:10Screw length:100Material:HCR

ESSVE concrete screw EUS2 A4, EUS2 HCR

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

EUS2 concrete screw size			6			8		10		
Nominal embedment	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
depth	[mm]	35	45	55	45	55	65	55	75	85
Static and quasi-static loads				All -:		11 1				
Fire exposure			All SIZE	es and a	ll embe	ament	aeptns			
C1 category - seismic	х	ok	ok	ok	х	ok	ok	Х	ok	

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

ESSVE concrete screw EUS2 A4, EUS2 HCR	
Intended use	Annex B1
Specification	

x no performance assessed

Specification of Intended use - continuation

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling. Hollow drilling only for size 8-10.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-10.
- Cleaning of borehole is not necessary, if using a hollow drill.

ESSVE concrete screw EUS2 A4, EUS2 HCR

Intended use
Specification continuation

Annex B2

Tab	ole 4:	Instal	llation	parameters
-----	--------	--------	---------	------------

EUS2 concrete screw size	6				8		10					
		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embedment depth		[mm]	35	45	55	45	55	65	55	75	85	
Nominal drill hole diameter	d ₀	[mm]	6			8			10			
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40			8,45			10,45			
Depth of drill hole	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95	
Clearance hole diameter	d _f ≤	[mm]		8		12			14			
Installation torque (version with connection thread)	Tinst	[Nm]	10			10 20			40			
Torque impact screw driver		Г1	Ma	ax. torq	ue acco	ording t	o manı	ufacture	er's inst	truction	าร	
Torque impact screw driver		[-]		160			300			450		

1) only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

ho

ho

hef

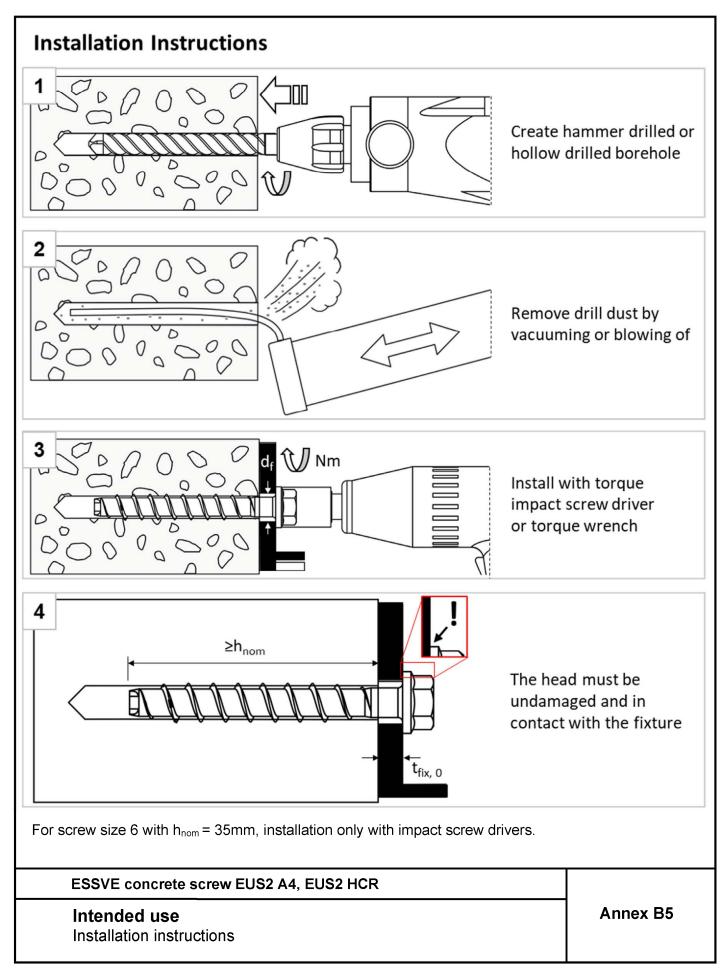
ESSVE concrete screw EUS2 A4, EUS2 HCR

Intended use Installation parameters

Annex B3

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

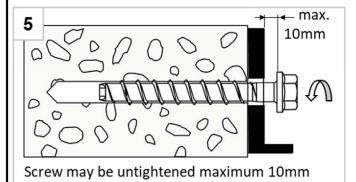
EUS2 concrete screw size				6			8		10		
Nominal embedment depth h _{nom} [mm]		h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
		[mm]	35	45	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]	80	80	100	80	100	120	100	130	130
Minimum edge distance	C _{min}	[mm]	35	35	35	35	35	35	40	40	40
Minimum spacing	S _{min}	[mm]	35	35	35	35	35	35	40	40	40

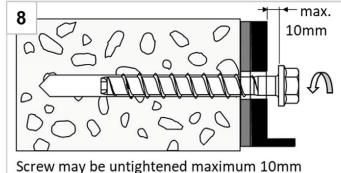

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

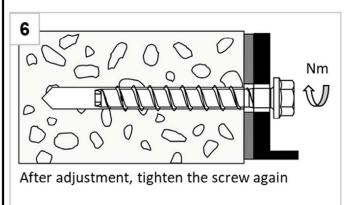
ESSVE concrete screw EUS2 A4, EUS2 HCR

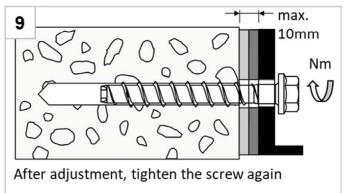
Intended use
Minimum thickness of member, minimum edge distance and minimum spacing

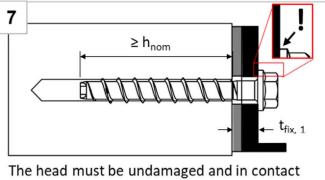
Annex B4



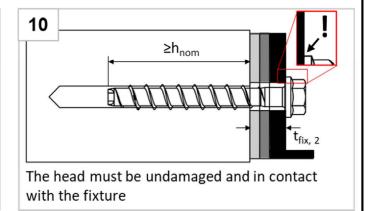



Installation Instructions - Adjustment


1. Adjustment



2. Adjustment



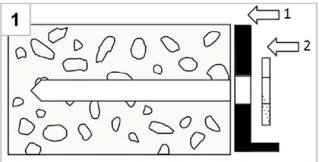
with the fixture

Note:

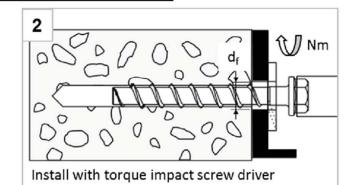
The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

ESSVE concrete screw EUS2 A4, EUS2 HCR

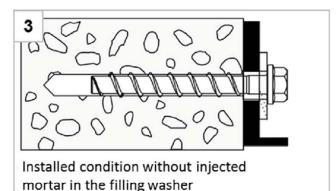
Intended use

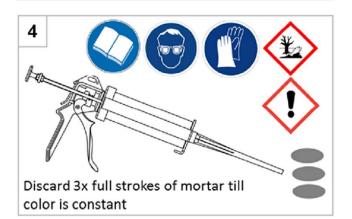

Installation instructions - Adjustment

Annex B6

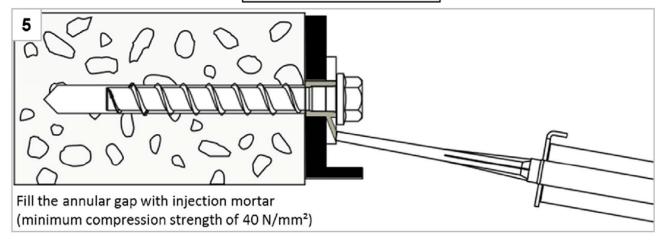


Installation Instructions - Filling annular gap


Positioning of fixture and filling washer



After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)



or torque wrench

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C3.

ESSVE concrete screw EUS2 A4, EUS2 HCR

Intended use

Installation instructions – Filling annular gap

Annex B7

Table 6: Charac	teristic v	alues	for sta	atic and	l quasi	-static	loadii	ng					
EUS2 concrete se	crew size				6			8			10		
Nominal embedm	ent denth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
Nominal embean			[mm]	35	45	55	45	55	65	55	75	85	
Steel failure for t	tension ar	nd shea	ar load	ding									
Characteristic tension load		$N_{Rk,s}$	[kN]		14,0			27,0		45,0			
Partial factor	Partial factor $\gamma_{Ms,N}$ [-		[-]					1,5					
Characteristic shear load		$V^0_{Rk,s}$	[kN]	7,0			13	3,5	17,0	22,5 34,0			
Partial factor γ _{Ms,V} [[-]	1,25									
Ductility factor		k ₇	[-]		0,8								
Characteristic bending load		M ⁰ Rk,s	[Nm]		10,9				26,0				
Pull-out failure in uncracked concrete													
Characteristic tension load C20/25		N _{Rk,p}	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
	C25/30			1,08	1,12	1,09	1,12		1,07	1,12			
Increasing	C30/37			1,15	1,22	1,17	1,	22	1,13	1,22			
factor for $N_{Rk,p} = N_{Rk,p (C20/25)} \cdot \Psi_c$	C40/50	Ψ _c	[-]	1,27	1,41	1,30	1,	41	1,23		1,41		
1 4κκ,ρ (C20/23)	C50/60			1,38	1,58	1,42	1,58		1,32	1,58			
Pull-out failure i	n cracked	concre	ete										
Characteristic ten load C20/25	sion	N _{Rk,p}	[kN]	2,5 ¹⁾	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0	
	C25/30			1,10	1,08	1,12		1,12		1,12	1,	09	
Increasing factor for N _{Rk,p} =	C30/37	Ψς	_{[.1}	1,18	1,15	1,22		1,22		1,22	1,17		
$N_{Rk,p}$ (C20/25) \cdot Ψ_c	C40/50	T c	[-]	1,32	1,27	1,41		1,41		1,41	1,	31	
111/10/(020/23) - 0	C50/60			1,45	1,38	1,58		1,58		1,58	1,	43	

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Performances
Characteristic values for static and quasi-static loading

Annex C1

Table 7. C	h a ra ata riatia v	م میام	ion ot	atic and	~	ctot:	a laad:	n	. + i	·i o n			
	haracteristic v	alues i	or sta	auc and		i-Stati	c loadi		ıtınuai	lion			
EUS2 conc	rete screw size				6			8		10			
 Nominal en	nbedment depth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
			[mm]	35	45	55	45	55	65	55	75	85	
Concrete fa	ailure: concrete	cone 1	failure	and spl	itting 1	failure							
Effective en depth	nbedment	h _{ef}	[mm]	25	34	42	32	41	49	40	57	65	
k-factor	cracked	k _{cr}	[-]		7,7								
K-Tactor	uncracked	k _{ucr}	[-]		11,0								
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}								
cone failure	edge distance	C _{cr,N}	[mm]				1	,5 x h _{ef}					
 Splitting	resistance	N ⁰ Rk,sp	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
failure	spacing	S _{cr,sp}	[mm]	120	160	240	200	240	290	230	280	320	
case 1	edge distance	C _{cr,sp}	[mm]	60	80	120	100	120	145	115	140	160	
Splitting	resistance	N ⁰ Rk,sp	[kN]	2)	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0	
failure	spacing	S _{cr,sp}	[mm]	2)	116	168	128	164	196	160	224	260	
case 2	edge distance	C _{cr,sp}	[mm]	2)	58	84	64	82	98	80	114	130	
Pry-out fai	lure												
Factor for p	ry-out failure	k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5		
Installation	factor	γinst	[-]					1,0		•			
Concrete e	dge failure												
Effective ler concrete	ngth in	I _f	[mm]	35	45	55	45	55	65	55	75	85	
Nominal ou screw	ter diameter of	d_{nom}	[mm]		6			8		10			

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

ESSVE concrete screw EUS2 A4, El	USZ	HCK
----------------------------------	-----	-----

Performances

Characteristic values for static and quasi-static loading continuation

Annex C2

²⁾ no performance assessed

Table 8: Seismic category C1 – Characteristic load values (only EUS2-HF, EUS2-H, EUS2-C,
EUS2-E, EUS2-E6 ¹⁾ , EUS2-PS, EUS2-PL and EUS2-I ¹⁾)

I =	-,			-	1		1 .				
EUS2 concrete screw size			(5		3	1	.0			
Nominal embedment depth		h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}			
		[mm]	45	55	45	65	55	85			
Steel failure for tension and	d shear	load (v	ersion EUS	2-HF, -H, -C	C, -E, -E6 ¹⁾ , -	PL, -PS and	-l ¹⁾)				
Characteristic tension load	N _{Rk,s,C1}	[kN]	14	1,0	27	7,0	45	5,0			
Partial factor	γMs,N	[-]	1,5								
Characteristic shear load EUS2-HF, -H, -E, -PS, -PL	V _{Rk,s,C1}	[kN]	3,5	4,0	8,0	10,0	14,0	16,0			
Characteristic shear load EUS2-C	$V_{Rk,s,C1}$	[kN]	2,5	2)	4,5	7,0	14,0	10,0			
Partial factor	γ _{Ms,V}	[-]	1,25								
Without filling of the annular gap ³⁾	$lpha_{\sf gap}$	[-]	0,5								
With filling of the annular gap ⁴⁾	$lpha_{\sf gap}$	[-]	1,0								
Pull-out failure (version EUS2-HF, -H, -C, -E, -E61), -PS, -PL and -I1)											
Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	1,5	3,0	3,0	8,5	6,0	17,0			
Concrete cone failure (versi	on EUS2	-HF , -H,	-C, -E, -E6 ¹⁾	, -PS, -PL ar	nd -l ¹⁾)						
Effective embedment depth	h _{ef}	[mm]	34	42	32	49	40	65			
Edge distance	C _{cr,N}	[mm]			1,5	x h _{ef}					
Spacing	S _{cr,N}	[mm]			3 x	h_{ef}					
Installation safety factor	γinst	[-]			1	,0					
Concrete pry-out failure (ve	ersion EU	JS2-HF, -	·Н, -С, -Е, -F	PS and -PL)							
Factor for pry-out failure	k ₈	[-]	1	,6	2,1	2,8	2	,5			
Concrete edge failure (versi	on EUS2	-HF, -H,	-C, -E, -PS a	nd -PL)							
Effective length in concrete	lf	[mm]	45	55	45	65	55	85			
Nominal outer diameter of screw	d _{nom}	[mm]		5		3	1	0			
1) only tonsion load											

¹⁾ only tension load

³⁾ without filling of the annular gap according to annex B5
4) with filling of the annular gap according to annex B7

ESSVE concrete screw EUS2 A4, EUS2 HCR	
Performances Seismic category C1 – Characteristic load values	Annex C3

²⁾ no performance assessed

EUS2 concrete scr	ew size				6			8			10	
Nominal embedme	nt donth		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
Nominal embedine	int depth		[mm]	35	45	55	45	55	65	55	75	85
Steel failure for te	nsion and	shear load										
	R30	N _{Rk,s,fi30}	[kN]		0,9			2,4		4,4		
	R60	N _{Rk,s,fi60}	[kN]		0,8		1,7			3,3		
	R90	N _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
characteristic Resistance	R120	N _{Rk,s,fi120}	[kN]	0,4				0,7			1,7	
	R30	$V_{Rk,s,fi30}$	[kN]		0,9			2,4			4,4	
	R60	V _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
	R90	V _{Rk,s,fi90}	[kN]		0,6			1,1		2,3		
	R120	V _{Rk,s,fi120}	[kN]		0,4		0,7			1,7		
	R30	M ⁰ _{Rk,s,fi30}	[Nm]		0,7		2,4			5,9		
	R60	M ⁰ Rk,s,fi60	[Nm]		0,6		1,8				4,5	
	R90	M ⁰ Rk,s,fi90	[Nm]		0,5		1,2			3,0		
	R120	M ⁰ Rk,s,fi120	[Nm]		0,3			0,9			2,3	
Pull-out failure												
characteristic	R30-90	N _{Rk,p,fi}	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4,
Resistance	R120	$N_{Rk,p,fi}$	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3,
Concrete cone fail	ure											
characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5,
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4,
Edge distance												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{ef}				
In case of fire attack	c from more	e than one s	ide, the	minir	num e	dge d	istanc	e shall	be ≥3	00mn	า.	
Spacing												
R30 - R120		S _{cr,fi}	[mm]					4 x h _{et}				
Pry-out failure												
R30 - R120		k ₈	[-]	1,0	1,	,6	2,1	2	,8		2,5	
The anchorage dept	th has to be	increased f	or wet	concre	te by	at leas	st 30 n	nm co	mpare	d to t	he give	en

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

ESSVE concrete screw EUS2 A4, EUS2 HCR	
Performances Fire exposure – characteristic values of resistance	Annex C4

 Z68054.22
 8.06.01-152/22

Table 10: Dis	nlacements	under stati	c and duas	i-static to	ension la	hac
TUDIC TO. DIS	piaccificitis	anaci stati	c arra quas	n static t		Juu

EUS2 concre	ete screw size		(8		10				
Nominal embedment depth [mm]			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
			[mm]	45	55	45	55	65	55	75	85
Cracked concrete	tension load	N	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46
	displacement	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
Concrete		δ_{N^∞}	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
	I	_	T		Ι	ı					
l	tension load	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
Uncracked concrete	12. 1.	δ_{NO}	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
	displacement	δ_{N^∞}	[mm]	0,42	0,43		0,58			0,79	

Table 11: Displacements under static and quasi-static shear load

EUS2 concrete screw size				(8		10			
Nominal embedment depth h _{nom}				h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
· · ·			[mm]	45	55	45	55	65	55	75	85
Cracked and	shear load	٧	[kN]	3,	8,6			16,2			
uncracked		$\delta_{ extsf{V0}}$	[mm]	1,	2,7			2,7			
concrete	displacement	δ_{V^∞}	[mm]	3,	,1	4,1			4,3		

ESSVE concrete screw EUS2 A4, EUS2 HCR

Performances

Displacements under static and quasi-static loads

Annex C5