

EKSPLOATACINIŲ SAVYBIŲ DEKLARACIJA No: 18-EUS [LT]

ESSVE GET IT DONE

Produkto tipo unikalus identifikavimo kodas: ESSVE Betonsraigtis EUS (carbon steel)

Gamintojas: ESSVE Produkter AB BOX 7091 164 07 Kista Sweden

Europos techninis įvertinimas (ETA)	Naudojimo paskirtis (-ys)	Išorinis skersmuo ir (grąžto) matmenys [mm]	Medžiaga	Gaminio numeris
	Single anchor or anchor groups for use in structural applications under static or quasi-static actions in cracked and uncracked concrete. Reinforced or unreinforced normal weight concrete according to EN 206-1 Concrete strength classes C20/25 to C50/60 according to EN 206-1	7,5(6)	Carbon steel, CINKAVIMO	Visi produktų grupės gaminių numeriai yra
		10,5(8)		
ETA-18/1064 (2022-10-11)		12,5(10)		
		16,5(14)		
ETA-22/0639 (2022-09-15)	Screw anchors in precast prestressed hollow core slabs for redundant non-structural systems.	7,5(6)		
		7,5(6)	/ RUSPERT	pateikiami ETA.
	Screw anchors for use in concrete for redundant non-structural systems.	10,5(8)	_	
		12,5(10)		
		16,5(14)		

Europos techninis įvertinimas (ETA)	Eksploatacinių savybių pastovumo vertinimo ir tikrinimo sistema (-os) (AVCP)	Europos vertinimo dokumentas	Techninio vertinimo įstaiga (TAB)	Notifikuotoji (- osios) įstaiga (-os) (NB)
ETA-18/1064 (2022-10-11)	1	EAD 330232-01-0601, (2019-12)	Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)	1219 (FPC)
ETA-22/0639 (2022-09-15)	2+	EAD 330747-00-0601, (2018-05)	Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)	1219 (FPC)

EKSPLOATACINIŲ SAVYBIŲ DEKLARACIJA No: 18-EUS [LT]

Europos techninis įvertinimas (ETA)	Esminės charakteristikos	Eksploatacinės savybės
	Characteristic resistance to tension and shear load (static and quasi-static loading)	ETA-18/1064 Annex C
ETA-18/1064 (2022-10-11)	Characteristic resistance and displacements for seismic performance categories C1 and C2	ETA-18/1064 Annex C6 – C7
	Reaction to fire	Class A1
	Resistance to fire	ETA-18/1064 Annex D
	Reaction to fire	Class A1
ETA-22/0639 (2022-09-15)	Resistance to fire	ETA-22/0639 Annex D
	Characteristic resistance to tension and shear load (static and quasi-static loading)	ETA-22/0639 Annex C

Nurodyto produkto eksploatacinės savybės atitinka visas deklaruotas eksploatacines savybes. Ši eksploatacinių savybių deklaracija pateikiama vadovaujantis Reglamentu (ES) Nr. 305/2011, atsakomybė už jos turinį tenka tik joje nurodytam gamintojui.

Pasirašyta (gamintojo ir jo vardu):

Viktor Bukowski

Product Manager – Concrete Fasteners

Kista 2023-12-11

[ETA documents attached as appendices]

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Tel.: (34) 91 302 04 40

https://dit.ietcc.csic.es direccion.ietcc@csic.es

European Technical

Assessment

ETA 18/1064 of 11/10/2022

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011

Trade name of the construction product

Product family to which the construction product belongs Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

ESSVE EUS concrete screw

Concrete screw of sizes 7.5, 10.5, 12.5, 14.2 and 16.5 for use in cracked and non-cracked concrete.

Manufacturer

ESSVE Produkter AB.

Esbogatan 14, 164 74 Kista. Sweden.

website: www.essve.com

Manufacturing plants

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This ETA replaces

Plant no. 421

22 pages including 4 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330232-01-0601 "Mechanical Fasteners for use in concrete", ed. December 2019

ETA 18/1064 version 1 issued on 28/01/2019

Page 2 of European Technical Assessment ETA 18/1064 version 1 of 11/10/2022

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The ESSVE EUS concrete screw is an anchor made of carbon steel. The anchor is made in sizes 7.5, 10.5. 12.5, 14.2 and 16.5, and is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product and its installation description are shown in annexes A.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static or quasi static actions	See annexes C1 to C5
Essential characteristic and displacements for seismic performance categories C1 and C2	See annexes C6 and C7

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
I Reaction to tire	Anchorages satisfy requirements for class A1
Resistance to fire	See annex D

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V of Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 11th of October 2022

Product and identification	
	EUS - SSW
	EUS - SSR
	EUS - SSP
SSA SOB	EUS - SSK
	EUS - SSH
	EUS - SSX
	EUS - SST
	EUS - SSN
ESSVE EUS concrete screw	
Product description	Annex A1
Identification	

	EUS - SSD
	EUS - SSI
	EUS - SSF
	EUS - SSO
	EUS - SSU
	EUS - SSG
	EUS - SSQ
	EUS - SSV
ESSVE EUS concrete screw	
Product description	Annex A2
Identification	

EUS - SSG2

EUS - SSC

Marking/Identification on anchor:

- Company logo
- Outer diameter
- Length
- Anchor type:

0	Hex head with washer	EUS - SSW
0	Round head	EUS - SSR
0	Pan head	EUS - SSP
0	Countersunk head	EUS - SSK
0	Hex head	EUS - SSH
0	Hex head, hexalobular recess	EUS - SSX
0	Truss head	EUS - SST
0	Truss head with underhead ribs	EUS - SSN
0	Connection thread with hexagon drive	EUS - SSD
0	Internal thread	EUS - SSI
0	Flat washer head with connection thread	EUS - SSF
0	Hex washer head with connection thread	EUS - SSO
0	Hex head with connection thread	EUS - SSU
0	SSF flex with coupler nut	EUS - SSG
0	SSO flex with coupler nut	EUS - SSQ
0	SSU flex with coupler nut	EUS - SSV
0	SSG flex without washer	EUS - SSG2
0	Hexagon head with bevelled shoulder	EUS - SSC
	<u> </u>	

ESSVE EUS concrete screw	
Product description	Annex A3
Identification	

Table A1: Materials

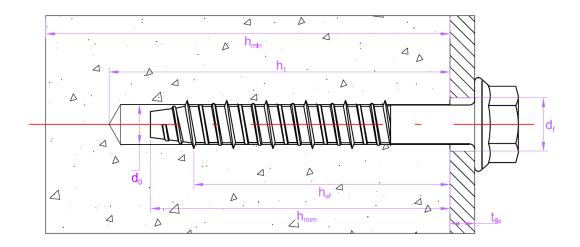
Item	Designation	ESSVE EUS concrete screw
1	Anchor Body	Carbon steel wire rod cold forged. Allowed coatings:

ESSVE EUS concrete screw	
Product description	Annex A4
Identification	

Installed condition

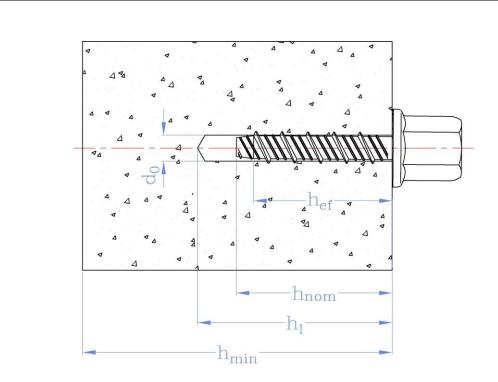
hef: Effective anchorage depth

h₁: Depth of drilled hole

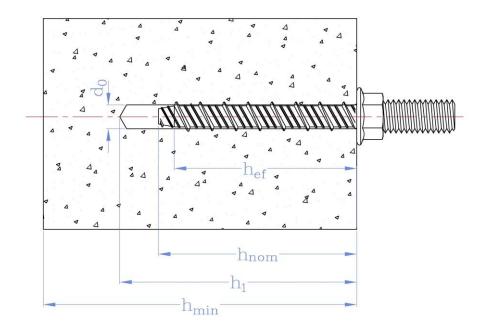

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Thickness of fixture


d₀: Nominal diameter of drill bit

df: Diameter of clearance hole in fixture



Drawing A1. Installed condition for anchors EUS - SSW, EUS - SSR, EUS - SSP, EUS - SSK, EUS - SSH, EUS - SSX, EUS - SST, EUS - SSN and EUS - SSC.

ESSVE EUS concrete screw	
Product description	Annex A5
Installed condition	

Drawing A2. Installed condition for anchors EUS - SSD, EUS - SSI, EUS - SSF, EUS - SSO, EUS - SSU, EUS - SSG, EUS - SSQ, EUS - SSV and EUS - SSG2.

Drawing A3. Installed condition for anchors EUS - SSD, EUS - SSI, EUS - SSF, EUS - SSO, EUS - SSU, EUS - SSG, EUS - SSQ, EUS - SSV and EUS - SSG2.

ESSVE EUS concrete screw	
Product description	Annex A6
Installed condition	

Intended use

Anchorages subjected to:

- Static or quasi static loads: all sizes and embedment depths.
- Seismic actions for performances C1 and C2 as per table bellow

Size	7.5		10.	.5		12.5		14	.2	16	.5
h _{nom}	40	55	50	60	60	70	85	75	105	75	110
C1				✓			✓				✓
C2							✓				✓

Base materials:

- Reinforced and unreinforced normal weight concrete without fibers according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Cracked and uncracked concrete.

Use conditions (environmental conditions):

- The anchor shall be used in dry internal conditions.
- The anchor may be used for anchorages with requirements related to resistance to fire.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be attached. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static loads are designed for design Method A in accordance with EN 1992-4:2018
- Anchorages under seismic actions are designed in accordance with EN 1992-4:2018.
 Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.
- Shear assessment only covers the shear force induced by the fixed piece, i.e. the piece located between the anchor head and the concrete block (piece contained in t_{fix}, see Drawing A1).

Installation:

- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture, as it is shown in Drawing A1, and it must not be damaged.

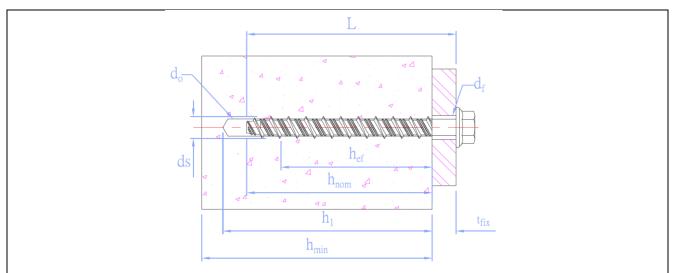
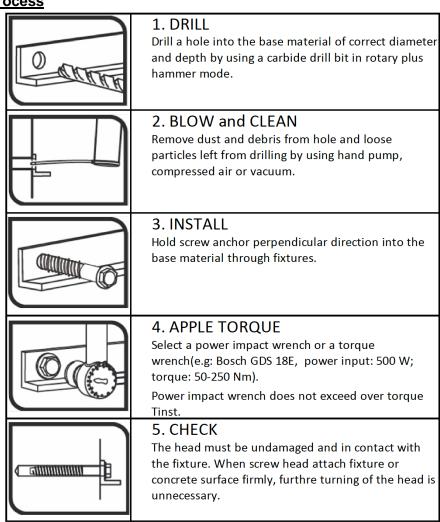

ESSVE EUS concrete screw	
Intended use	Annex B1
Specifications	

Table B1: Installation parameters

Installation parameters			Performance								
	,			S 7.5	EUS	10.5	E	EUS 12.5	5		
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	60	70	85		
d_0	Nominal diameter of drill bit:	[mm]		6	8	3		10			
df	Diameter of clearance hole in fixture:	[mm]		9	1	2	14				
ds	Outer diameter of the thread	[mm]	7	`.5	10	.5	12.5				
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	100	105	130		
h ₁	Depth of drilled hole:	[mm]	50	65	60	70	70	85	100		
h _{ef}	Effective anchorage depth:	[mm]	29	42	37	45	44	52	65		
Tins	Installation torque	[Nm]	,	15	2	5		50			
t _{fix}	Thickness of fixture	[mm]	L-40	L-55	L-50	L-60	L-60	L-70	L-85		
Smin	Minimum allowable spacing:	[mm]	35	45	35	50	50	60	70		
Cmin	Minimum allowable edge distance:	[mm]	35	45	35	50	40	60	60		


Insta	Ilation parameters			Perf	ormance		
	manon parametere		EUS	14.2	EUS 10	6.5	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	75	105	75	110	
d_0	Nominal diameter of drill bit:	[mm]	•	12	14		
df	Diameter of clearance hole in fixture:	[mm]		16	18		
ds	Outer diameter of the thread	[mm]	1-	4.2	16.5		
h _{min}	Minimum thickness of concrete member:	[mm]	120	170	120	175	
h ₁	Depth of drilled hole:	[mm]	90	120	90	130	
h _{ef}	Effective anchorage depth:	[mm]	57	82	56	86	
Tins	Installation torque	[Nm]	(60	80		
t _{fix}	Thickness of fixture	[mm]	L-75	L-105	L-75	L-110	
Smin	Minimum allowable spacing:	[mm]	70	70	75	100	
Cmin	Minimum allowable edge distance:	[mm]	45	45	45	100	

ESSVE EUS concrete screw	
Performances	Annex B2
Installation parameters and installation procedure	

Drawing B1. Installed condition for anchors EUS - SSW, EUS - SSR, EUS - SSP, EUS - SSK, EUS - SSH, EUS - SSX, EUS - SST, EUS - SSN and EUS - SSC.

Installation process

ESSVE EUS concrete screw

Performances Annex B3

Installation parameters and installation procedure

Table C1: Characteristic values to tension loads of design method A

Characteristic values of resistance to tension loads of					Per	forma	nce		
design	method A		EUS	7.5	EUS 10.5		EUS 12		.5
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	60	70	85
Tension	loads: steel failure								
N _{Rk,s}	Tension steel characteristic resistance:	[kN]	18	3.7	32	2.7		51.2	
γMs	Partial safety factor: 1)	[-]	1	.5	1	.5		1.5	
Tension	loads: pull-out failure in concrete								
N _{Rk,p,ucr}	Tension characteristic resistance in C20/25 uncracked concrete:	[kN]	6.0	9.0	2)	12.0	2)	20	2)
Ψc,ucr	C30/37	[-]	1.16	1.22	1.16	1.08	1.15	1.04	1.09
Ψc,ucr	C40/45	[-]	1.28	1.41	1.28	1.15	1.27	1.07	1.15
Ψc,ucr	C50/60	[-]	1.39	1.55	1.39	1.19	1.37	1.09	1.21
N _{Rk,p,cr}	Tension characteristic resistance in C20/25 cracked concrete:	[kN]	3.0	6.0	6.5	9.0	2)	12	2)
 Ψc,cr	C30/37	[-]	1.17	1.22	1.16	1.22	1.14	1.22	1.18
Ψc,cr	C40/45	[-]	1.30	1.41	1.29	1.41	1.25	1.41	1.33
Ψc,cr	C50/60	[-]	1.42	1.55	1.40	1.55	1.34	1.55	1.46
Tension	loads: concrete cone and splitting failure								
γ_{ins}	Installation safety factor: 1)	[-]	1.2	1.2	1.2	1.2	1.2	1.2	1.0
h _{ef}	Effective embedment depth:	[mm]	29	42	37	45	44	52	65
k _{ucr,N}	Factor for uncracked concrete:	[-]				11.0			
k _{cr,N}	Factor for cracked concrete:	[-]				7.7			
S _{cr,N}	Critical spacing:	[mm]			;	3.0 x h _e	f		
C _{cr,N}	Critical edge distance:	[mm]			-	1.5 x h _e	ıf		
S _{cr,sp}	Critical spacing (splitting):	[mm]			;	3.0 x h _e	f		
C _{cr,sp}	Critical edge distance (splitting):	[mm]				1.5 x h _e	f		

¹⁾ In absence of other national regulations
2) Pull-out failure is not decisive

ESSVE EUS concrete screw	
Performances	
Characteristic values for tension loads	Annex C1

Characte	eristic values of resistance to tension loads of design meth	od A		Perfor	mance	
Cilaracti	eristic values of resistance to tension loads of design metri	lou A	EUS	14.2	EUS	16.5
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	75	105	75	110
Tension	loads: steel failure					
$N_{Rk,s}$	Tension steel characteristic resistance:	[kN]	80	0.6	11	5.9
γMs	Partial safety factor: 1)	[-]	1	.5	1	.5
Tension	loads: pull-out failure in concrete					
$N_{Rk,p,ucr}$	Tension characteristic resistance in C20/25 uncracked concrete:	[kN]	2)	2)	2)	40
Ψc,ucr	C30/37	[-]	1.10	1.09	1.13	1.04
Ψc,ucr	C40/45	[-]	1.17	1.16	1.24	1.07
Ψc,ucr	C50/60	[-]	1.23	1.21	1.33	1.09
N _{Rk,p,cr}	Tension characteristic resistance in C20/25 cracked concrete:	[kN]	2)	2)	2)	30
Ψc,cr	C30/37	[-]	1.11	1.08	1.14	1.12
Ψc,cr	C40/45	[-]	1.19	1.15	1.26	1.23
Ψc,cr	C50/60	[-]	1.26	1.20	1.35	1.30
Tension	loads: concrete cone and splitting failure					
γ_{ins}	Installation safety factor: 1)	[-]	1.2	1.0	1.2	1.0
h _{ef}	Effective embedment depth:	[mm]	57	82	56	86
k _{ucr,N}	Factor for uncracked concrete:	[-]	11.0			
k _{cr,N}	Factor for cracked concrete:	[-]	7.7			
Scr,N	Critical spacing:	[mm]	3.0 x h _{ef}			
Ccr,N	Critical edge distance:	[mm]	1.5 x h _{ef}			
Scr,sp	Critical spacing (splitting):	[mm]	3.0 x h _{ef}			
C _{cr,sp}	Critical edge distance (splitting):	[mm]		1.5	x h _{ef}	

¹⁾ In absence of other national regulations
2) Pull-out failure is not decisive

ESSVE EUS concrete screw	
Performances	Annex C2
Characteristic values for tension loads	

Table C2: Displacements under tension loads for ESSVE EUS concrete screw

Characteristic values of displacements under tension			Performance						
loads of design method A			EUS	7.5	EUS	10.5	EUS 12.5		
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	60	70	85
Displ	acements under tension loads in uncracked c	oncrete	•						
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	2.4	3.6	4.4	4.8	5.7	9.5	12.3
δνο	Short term displacement under tension loads:	[mm]	0.06	0.40	0.08	0.40	0.09	0.40	0.12
δ _{N∞}	Long term displacement under tension loads:	[mm]	0.30	1.00	0.35	1.10	0.40	1.40	0.55
Displ	acements under tension loads in cracked con	crete							
N	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	1.2	2.4	2.5	3.6	4.0	5.7	8.6
δ_{N0}	Short term displacement under tension loads:	[mm]	0.10	0.60	0.12	0.70	0.15	0.50	0.17
δ _{N∞}	Long term displacement under tension loads:	[mm]	1.10	1.40	1.20	1.20	1.25	1.40	0.55

Char	acteristic values of displacements under tension loads of de	Performance					
meth	method A					EUS 16.5	
h_{nom}	Overall anchor embedment depth in the concrete:	[mm]	75	105	75	110	
	Displacements under tension loads in uncracked concre						
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	11.3	18.1	8.2	19.0	
δ_{N0}	Short term displacement under tension loads:	[mm]	0.08	0.10	0.10	0.90	
δ_{N^∞}	Long term displacement under tension loads:	[mm]	0.40	0.40	0.45	1.40	
	Displacements under tension loads in cracked concrete)					
N	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	7.7	13.3	5.7	11.9	
δνο	Short term displacement under tension loads:	[mm]	0.13	0.15	0.20	0.60	
δ _{N∞}	Long term displacement under tension loads:	[mm]	1.25	1.35	1.32	1.20	

ESSVE EUS concrete screw	
Performances	Annex C3
Displacement under tension loads	

Table C3: Characteristic values to shear loads of design method A

Chara	Characteristic values of resistance to shear loads			Performance						
Chara	acteristic values of resistance to shear	ioaus	EUS 7.5		EUS 10.5		EUS 12.5			
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	60	70	85	
Shear	r loads: steel failure without lever arm									
$V_{Rk,s}$	Shear steel characteristic resistance:	[kN]	9.3	7.5	16.	3		25.6		
k ₇	k ₇ factor:		0.8	8	0.0	3		0.8		
γMs	Partial safety factor: *)	[-]	1.2	25	1.2	5	1.25			
Shear	r loads: steel failure with lever arm									
M^0 Rk,s	Characteristic bending moment:	[Nm]	15.2		35.3			69.3		
γMs	Partial safety factor: *)	[-]	1.2	25	1.2	5	1.25			
Shear	r loads: concrete pryout failure									
k ₈	k ₈ factor:	[-]	0.8	1.0	1.2	1.0	1.0	1.0	1.0	
γinst	Installation safety factor: *)	[-]	1.0	1.5	1.0	1.5	1.0	1.5	1.0	
Shear	r loads: concrete edge failure									
lf	Effective anchorage depth under shear loads:	[mm]	29	42	37	45	44	52	65	
d _{nom}	Nominal outer diameter of screw:	[mm]	6	6	8	8	10	10	10	
γinst	Installation safety factor: *)	[-]	1.2	1.5	1.2	1.5	1.2	1.5	1.0	

^{*)} In absence of other national regulations

Char	acteristic values of resistance to shear loads			Perfor	rmance		
Chara	acteristic values of resistance to shear loads		EUS 14.2		EUS	16.5	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	75	105	75	110	
Shear	r loads: steel failure without lever arm						
$V_{Rk,s}$	Shear steel characteristic resistance:	[kN]	40).3	57	7.9	
k ₇	k ₇ factor:		0	.8	0.	.8	
γMs	Partial safety factor: *)	[-]	1.	25	1.3	25	
Shear	r loads: steel failure with lever arm						
$M^0_{Rk,s}$	Characteristic bending moment:	[Nm]	13	7.1	23	5.9	
γMs	Partial safety factor: *)	[-]	1.	25	1.25		
Shear	r loads: concrete pryout failure						
k ₈	k ₈ factor:	[-]	1	.5	1.6	2.0	
γinst	Installation safety factor: *)	[-]	1.	25	1.0	1.5	
Shear	r loads: concrete edge failure						
lf	Effective anchorage depth under shear loads:	[mm]	57	82	56	86	
d _{nom}	Nominal outer diameter of screw:	[mm]	12 12		14	14	
γinst	Installation safety factor: *)	[-]	1.2	1.0	1.2	1.5	

^{*)} In absence of other national regulations

ESSVE EUS concrete screw	
Performances	Annex C4
Characteristic values for shear loads	

Table C4: Displacements under shear loads

Char	Characteristic values of displacements under shear		Performances						
loads	loads of design method A		EUS 7.5		EUS 10.5		EUS 12.		.5
h_{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	60	70	85
Disp	lacements under shear loads in uncracked cor	ncrete							
٧	Service shear load in cracked and uncracked concrete C20/25 to C50/60:	[kN]	3.0	3.6	4.4	4.8	5.7	9.5	12.3
δ_{V0}	Short term displacement under shear loads:	[mm]	0.47	0.4	0.50	0.40	0.40	0.40	0.80
δ∨∞	Long term displacement under shear loads:	[mm]	0.70	1.0	0.75	1.10	0.60	1.40	1.20
Disp	lacements under shear loads in cracked concr	ete							
٧	Service shear load in cracked and uncracked concrete C20/25 to C50/60:	[kN]	2.1	2.4	3.1	3.6	4.0	5.7	8.6
δνο	Short term displacement under shear loads:	[mm]	0.40	0.60	0.45	0.70	0.50	0.50	0.6
δ∨∞	Long term displacement under shear loads:	[mm]	0.60	1.40	0.67	1.20	0.75	1.40	0.90

Char	Characteristic values of displacements under shear loads of design		Performances			
meth	nod A	EUS 14.2		14.2	EUS 1	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	75	105	75	110
Disp	lacements under shear loads in uncracked concrete					
V	Service shear load in cracked and uncracked concrete C20/25 to C50/60:	[kN]	8.4	17.4	8.2	19.0
δ_{V0}	Short term displacement under shear loads:	[mm]	1.00	1.10	0.55	0.90
δ∨∞	Long term displacement under shear loads:	[mm]	1.50	1.80	0.82	1.4
Disp	lacements under shear loads in cracked concrete					
V	Service shear load in cracked and uncracked concrete C20/25 to C50/60:	[kN]	5.9	12.2	5.7	11.9
δνο	Short term displacement under shear loads:	[mm]	0.85	1.00	0.50	0.60
δ∨∞	Long term displacement under shear loads:	[mm]	1.20	1.50	0.75	1.20

Information for design of anchorages under shear loads:

The conditions given in EN 1992-4:2018 are not fulfilled because the diameter of the clearance hole in the fixture (see "Installation parameters" table B1) is greater than the values given in EN 1992-4 Table 6.1 for the corresponding diameter of the anchor. Therefore, condition EN 1992-4 6.2.2.2(1) a) 2) is not valid for shear steel failure for anchors groups (n > 1). Consequently, it is assumed that for the proof of steel failure, only two anchors of a group are effective and take up shear forces."

ESSVE EUS concrete screw	
Performances	Annex C5
Displacements under shear loads	

Table C5: Essential characteristics for seismic performance category C1

		_	Р	erformance	es .
Essential	characteristics for seismic performance cate	gory C1	EUS 10.5	EUS 12.5	EUS 16.5
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	60	85	110
Steel failu	re for tension and shear loads				
N _{Rk,s,C1}	Characteristic resistance:	[kN]	32.7	51.2	115.9
γMs	Partial safety factor 1):	[]	1.5	1.5	1.5
$V_{Rk,s,C1}$	Characteristic resistance:	[kN]	16.3	24.3	57.9
γMs	Partial safety factor 1):	[]	1.25	1.25	1.25
Pull out fa	ailure				
N _{Rk,p,C1}	Characteristic resistance in cracked concrete:	[kN]	9.0	24.0	30.0
γinst	Robustness:	[]	1.8	1.8	1.5
Concrete	cone failure				
h _{ef}	Effective embedment depth:	[mm]	45	65	86
S _{cr,N}	Concrete Spacing:	[mm]	135	195	258
C _{cr,N}	cone failure Edge distance:	[mm]	67	98	129
γinst	Installation safety factor:	[]	1.2	1.0	1.0
Concrete	pry-out failure				
k ₈	Pry-out factor:	[]	1.0	0.9	1.5
γinst	Installation safety factor:	[]	1.2	1.0	1.0
Concrete	edge failure				
$\ell_{ \mathrm{f}} = h_{\mathrm{ef}}$	Effective length of fastener under shear loads:	[mm]	45	65	86
d _{nom}	Nominal outer diameter of screw:	[mm]	8	10	14
γinst	Installation safety factor:	[]	1.0	1.0	1.0

¹⁾ In absence of other national regulations

ESSVE EUS concrete screw	
Performances	Annex C6
Essential characteristics for seismic performance category C1	

Table C6: Essential characteristics for seismic performance category C2

			Perforr	nances
Essential cha	aracteristics for seismic performance category C2		EUS 12.5	EUS 16.5
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	85	110
Steel failure	for tension and shear loads			
N _{Rk,s,C2}	Characteristic resistance:	[kN]	51.2	115.9
γMs	Partial safety factor 1):	[]	1.5	1.5
V _{Rk,s,C2}	Characteristic resistance:	[kN]	16.1	41.1
γMs	Partial safety factor 1):	[]	1.25	1.25
Pull out failu	re			
N _{Rk,p,C2}	Characteristic resistance in cracked concrete:	[kN]	11.0	9.6
γinst	Robustness:	[]	1.8	1.5
Concrete co	ne failure			
h _{ef}	Effective embedment depth:	[mm]	65	86
S _{cr,N}	Concrete Spacing:	[mm]	195	258
C _{cr,N}	cone failure Edge distance:	[mm]	98	129
γinst	Installation safety factor:	[]	1.0	1.0
Concrete pry	<i>y</i> -out failure			
k 8	Pry-out factor:	[]	0.92	1.5
γinst	Installation safety factor:	[]	1.0	1.0
Concrete ed	ge failure		.	
$\ell_{\text{f}}=h_{\text{ef}}$	Effective length of fastener under shear loads:	[mm]	65	86
d _{nom}	Nominal outer diameter of screw:	[mm]	10.0	14.0
γinst	Installation safety factor:	[]	1.0	1.0
Displacemen	nts			
δ _{N,C2} (DLS)	Displacement at	[mm]	0.35	0.73
δ _V C2 (DLS)	Damage Limitation State:2)	[mm]	5.16	5.67
δ _{N,C2} (ULS)	Displacement at	[mm]	1.11	2.06
δ _{V,C2} (ULS)	Ultimate Limitation State: ²⁾	[mm]	7.90	7.90

DLS: Damage Limitation State: see EN 1992-4, 2.2.1) ULS: Ultimate Limitation State: see EN 1992-4 2.2.1)

ESSVE EUS concrete screw	
Performances	Annex C7
Essential characteristics for seismic performance category C2	

¹⁾ In absence of other national regulations

²⁾ The listed displacements represent mean values

Table D1: Characteristic values to fire resistance

Fire res	istance duration = 30 minutes	-	EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5	
Tei	nsion loads, steel failure						
$N_{Rk,s,fi,30}$	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90	
Pull-out failure							
N _{Rk,p,fi,30}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50	
Co	ncrete cone failure **)						
N _{Rk,c,fi,30}	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35	
She	ear loads steel failure without lever arm						
V _{Rk,s,fi,30}	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90	
Shear loads, steel failure with lever arm							
M _{Rk,s,fi,60}	Characteristic bending resistance	[Nm]	0.19	0.66	1.73	5.90	

Fire res	istance duration = 60 minutes	-	EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5
Te	nsion loads, steel failure					
N _{Rk,s,fi,60}	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Pu	Il-out failure					
N _{Rk,p,fi,60}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Co	ncrete cone failure **)					
N _{Rk,c,fi,60}	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
She	ear loads, steel failure without lever arm					
$V_{Rk,s,fi,60}$	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Shear loads, steel failure with lever arm						
M _{Rk,s,fi,60}	Characteristic bending resistance	[Nm]	0.17	0.57	1.30	4.42

Fire res	istance duration = 90 minutes	_	EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5
Te	nsion loads, steel failure					
N _{Rk,s,fi,90}	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88
Pu	II-out failure					
N _{Rk,p,fi,90}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Co	ncrete cone failure **)					
N _{Rk,c,fi,90}	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
She	ear loads, steel failure without lever arm					
V _{Rk,s,fi,90}	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88
Shear loads, steel failure with lever arm						
M _{Rk,s,fi,90}	Characteristic bending resistance	[Nm]	0.13	0.44	1.13	3.83

ESSVE EUS concrete screw	
Performances Characteristic values for fire resistance	Annex D1

Fire resi	stance duration = 120 minutes		EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5
Ten	Tension loads, steel failure					
N _{Rk,s,fi,120}	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
Pul	l-out failure					
N _{Rk,p,fi,120}	Character. resistance in concrete C20/25 to C50/60	[kN]	1,20	1.80	2.40	6.00
Cor	ncrete cone failure **)					
NRk,c,fi,120	Character. resistance in concrete C20/25 to C50/60	[kN]	1.65	1.96	2.81	9.88
She	ar loads, steel failure without lever arm					
V _{Rk,s,fi,120}	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
She	Shear loads, steel failure with lever arm					
M _{Rk,s,fi,120}	Characteristic bending resistance	[Nm]	0.10	0.35	0.87	2.95

Spac	ing and edge distances		EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5
S _{cr,N}	Spacing	[mm]	168	180	208	344
Smin	Minimum spacing	[mm]	45	50	60	100
$C_{\text{cr,N}}$	Edge distance	[mm]	84	90	104	172
C_{min}	Minimum edge distance (one side fire)	[mm]	84	90	104	172
C _{min}	Minimum edge distance (two sides fire)	[mm]	300	300	300	300
γMsp	Partial safety factor*)	[-]	1.0	1.0	1.0	1.0

In absence of other national regulations

 ^{*)} In absence of other national regulations
 **) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Concrete pry-out failure		EUS 7.5	EUS 10.5	EUS 12.5	EUS 16.5
k factor	[]	1	1	1	2

According EN 1992-4:2018, these values of k factor and the relevant values of NRk,c,fi given in the above tables have to be considered in the design.

Concrete edge failure

The characteristic resistance $V^0_{RK,c,fi}$ in C20/25 to C50/60 concrete is determined by: $V^0_{RK,c,fi} = 0.25 \text{ x } V^0_{RK,c} \ (\leq R90)$ and $V^0_{RK,c,fi} = 0.20 \text{ x } V^0_{RK,c} \ (R120)$

With V⁰RK,c initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to EN 1992-4:2018.

ESSVE EUS concrete screw	
Performances Characteristic values for fire resistance	Annex D2

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Tel.: (34) 91 302 04 40 direccion.ietcc@csic.es

Fax: (34) 91 302 07 00 https://dit.ietcc.csic.es

Designated

European Technical Assessment

ETA 22/0639 of 15/09/2022

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product:

Product family to which the construction product belongs:

Manufacturer:

Manufacturing plant:

This European Technical **Assessment contains:**

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

ESSVE EUS

Screw anchor of sizes 7.5, 10.5, 12.5 and 16.5 for use in concrete and in precast prestressed hollow core slabs for redundant non-structural systems

ESSVE Produkter AB.

Esbogatan 14, 164 74 Kista, Sweden.

website: www.essve.com

Plant no. 421

18 pages including 4 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330747-00-0601 "Fasteners for use in concrete for redundant non-structural systems", ed. May 2018

Page 2 of European Technical Assessment ETA 22/0639 of 15th of September 2022

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The anchor ESSVE EUS is a fastener made of carbon steel of sizes 7.5, 10.5, 12.5 and 16.5. The fastener is installed into a predrilled cylindrical drilled hole. The special thread of the fastener cuts an internal thread into the concrete member while setting. The anchorage is characterised by mechanical interlock between fastener and concrete.

Product and installation descriptions are given in annex A.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based, lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
	Anchorages satisfy requirements for class A1 according to EN 13501-7		
Resistance to fire	See annex D		

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance under static or quasi static	See annex C
loading	

4. Assessment and Verification of Constancy of Performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performance (see annex V to Regulation (EU) No 305/2011) is 97/161/EC.

The system to be applied is 2+.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 15th of September 2022

Product and identification	
	EUS - SSW
	EUS - SSR
	EUS - SSP
	EUS - SSK
	EUS - SSH
	EUS - SSX
	EUS - SST
	EUS - SSN
Anchor ESSVE EUS	
Product description	Annex A1
Identification	

	EUS - SSD
	EUS - SSI
	EUS - SSF
	EUS - SSO
	EUS - SSU
	EUS - SSG
	EUS - SSQ
	EUS - SSV
Anchor ESSVE EUS	
Product description	Annex A2
Identification	

EUS - SSG2

EUS - SSC

Marking/Identification on anchor:

- Company logo Outer diameter
- Length
- Anchor type:

0	Hex head with washer	EUS - SSW
0	Round head	EUS - SSR
0	Pan head	EUS - SSP
0	Countersunk head	EUS - SSK
0	Hex head	EUS - SSH
0	Hex head, hexalobular recess	EUS - SSX
0	Truss head	EUS - SST
0	Truss head with underhead ribs	EUS - SSN
0	Connection thread with hexagon drive	EUS - SSD
0	Internal thread	EUS - SSI
0	Flat washer head with connection thread	EUS - SSF
0	Hex washer head with connection thread	EUS - SSO
0	Hex head with connection thread	EUS - SSU
0	SSF flex with coupler nut	EUS - SSG
0	SSO flex with coupler nut	EUS - SSQ
0	SSU flex with coupler nut	EUS - SSV
0	SSG flex without washer	EUS - SSG2
0	Hexagon head with bevelled shoulder	EUS - SSC

Anchor ESSVE EUS	
Product description	Annex A3
Identification	

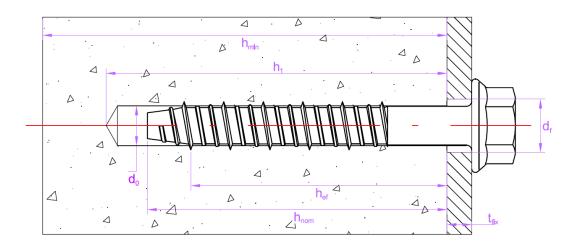
Table A1: Materials

Item	Designation	ESSVE EUS concrete screw
1	Anchor Body	Carbon steel wire rod cold forged. Allowed coatings:

Installed condition

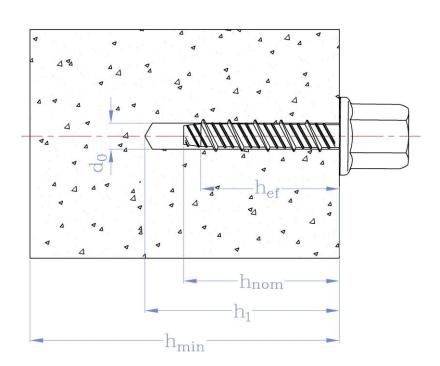
hef: Effective anchorage depth

h₁: Depth of drilled hole

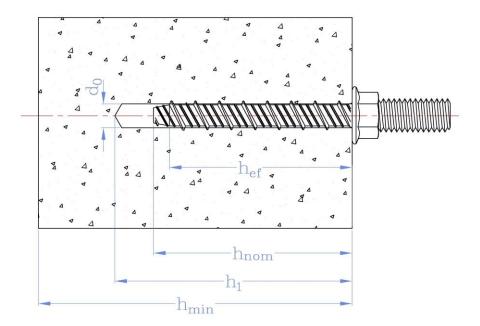

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Thickness of fixture

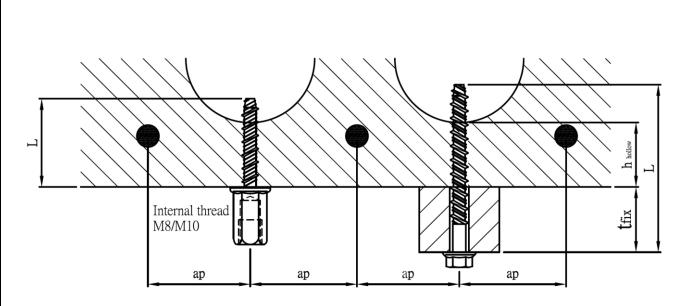

do: Nominal diameter of drill bit

d_f: Diameter of clearance hole in fixture



Drawing A1. Installed condition in normal weight concrete for anchors EUS - SSW, EUS - SSR, EUS - SSP, EUS - SSK, EUS - SSH, EUS - SSX, EUS - SST, EUS - SSN and EUS - SSC.

Anchor ESSVE EUS	
Product description	Annex A4
Materials and installed condition in concrete	



Drawing A2. Installed condition for anchors EUS - SSD, EUS - SSI, EUS - SSF, EUS - SSO, EUS - SSU, EUS - SSG, EUS - SSQ, EUS - SSV and EUS - SSG2

Drawing A3. Installed condition for anchors EUS - SSD, EUS - SSI, EUS - SSF, EUS - SSO, EUS - SSU, EUS - SSG, EUS - SSQ, EUS - SSV and EUS - SSG2

Anchor ESSVE EUS	
Product description	Annex A5
Installed condition in concrete	

Drawing A4. Installed condition in prestressed hollow core concrete slabs

ap: Distance between anchor position and prestressing steel (≥ 50 mm).

L: Screw anchor length

h_{hollow}: Thickness of hollow core concrete slab ≥ 25 mm

 t_{fix} : Fixture thickness ($\geq L - h_{hollow}$, where $h_{hollow} = 25$ mm if h_{hollow} is unknown)

w: Core width e: Web thickness

Note that $W/e \le 4.2$

Anchor ESSVE EUS	
Product description	Annex A6
Installed condition in prestressed hollow core concrete slabs	

Specifications of intended use

Anchorages subjected to:

- Static or quasi static loads for redundant non-structural systems
- Use for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs)
- The anchor may only be used if in the design and installation specifications for the fixture the excessive slip or failure of one anchor will not result in a significant violation of the requirements on the fixture in the serviceability and ultimate state.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked or uncracked concrete.
- Precast, prestressed hollow core concrete slabs, strength C30/37 according to EN 206:2013

Use conditions (environmental conditions):

Anchorages subjected to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be
 ensured that local spalling of the concrete cover does not occur.

Installation:

- Hole drilling by rotary plus hammer mode.
- Fastener installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor must not be possible.
- The head of the fastener must be supported on the fixture and is not damaged.
- In precast pre-stressed hollow core slabs, the screw may be installed from all directions, if the web thickness and the spacing to the tensioning strands are defined according to Table B2
- Shear assessment only covers the shear force induced by the fixtured piece, i.e. the piece located between the anchor head and the concrete block (piece contained in t_{fix}, see Drawings A1 and A4).

Anchor ESSVE EUS	
Intended use	Annex B1
Specifications	

Table B1: Installation parameters in concrete

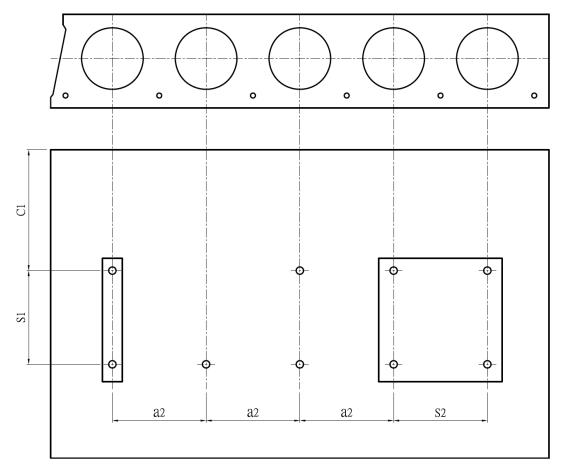

Installation parameters		Performance					
		EUS7.5		EUS10.5	EUS12.5	EUS16.5	
d_0	Nominal diameter of drill bit:	[mm]	6	6	8	10	14
df	Diameter of clearance hole in fixture:	[mm]	9	9	12	14	18
ds	Outer diameter of the thread	[mm]	7.5	7,5	10,5	12,5	16,5
L _{min}	Total length of the anchor (L)	[mm]	40	55	50	60	75
L _{max}		[mm]	400	400	400	400	400
h_{min}	Minimum thickness of concrete member:	[mm]	80	90	90	100	120
h ₁	Depth of drilled hole:	[mm]	L+10	L+10	L+10	L+10	L+15
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	40	55	50	60	75
h _{ef}	Effective anchorage depth:	[mm]	29	42	37	44	56
Tins	Installation torque	[Nm]	15	15	25	50	80
t _{fix}	Thickness of fixture	[mm]	L-40	L-55	L-50	L-60	L-75
Smin	Minimum allowable spacing:	[mm]	35	35	35	50	75
Cmin	Minimum allowable edge distance:	[mm]	35	35	35	40	45

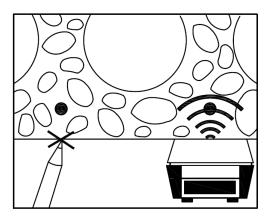
Table B2: Installation parameters in prestressed hollow core concrete slabs

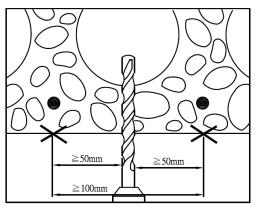
Install	ation parameters			Performance EUS7.5	
d ₀	Nominal diameter of drill bit:	[mm]		6	
df	Diameter of clearance hole in fixture:	[mm]	9		
ds	Outer diameter of the thread	[mm]	7,5		
L _{min}	Total law sthese fithes are about (1)	[mm]	> h _{hollow}		
L _{max}	Total length of the anchor (L)	[mm]	400		
h _{hollow}	Minimum concrete thickness with hollow	[mm]	35	30	25
h _{ef}	Effective anchorage depth:	[mm]	27	23	19
Tins	Installation torque	[Nm]	15		
t _{fix}	Thickness of fixture	[mm]	≥ L - 35 ≥ L - 30 ≥ L - 25		
Smin	Minimum allowable spacing:	[mm]	100		
C _{min}	Minimum allowable edge distance:	[mm]	100		

Anchor ESSVE EUS	
Performances	Annex B2
Installation parameters and installation procedure	

Installation process in prestressed hollow core concrete slabs

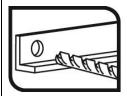
Drawing B3. Installation parameter for anchorage in precast prestressed hollow core slabs

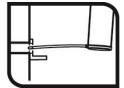

c₁, c₂: Edge distance s₁, s₂: Anchor spacing

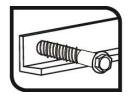

 a_1, a_2 : Distance between anchor groups c_{min} : Minimum edge distance ≥ 100 mm s_{min} : Minimum anchor spacing ≥ 100 mm

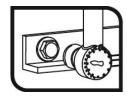
a_{min:} Minimum distance between anchor groups ≥ 100 mm

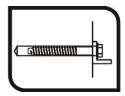
Anchor ESSVE EUS	
Performances	Annex B3
Installation parameters and installation procedure	


Drawing B4 shows the installation steps for prestressed hollow core concrete slabs. Firstly, determine and mark positions of the tensioning strands, and then keep distance.






Drawing B4. Installation process in prestressed hollow core concrete slabs


Installation process

Drawing B5. Installation process

Anchor shall be installed using a torque wrench or an electrical impact driver; power input: 500 W; torque: 50-250 Nm. (e.g: Bosch GDS 18E)

Anchor ESSVE EUS	
Performances	Annex B4
Installation parameters and installation procedure	

Table C1: Characteristic values to tension loads of design method A according to EN 1992-4

Characteristic values of resistance to tension loads of				Performance				
desig	n method A		EUS	S7.5	EUS10.5	EUS12.5	EUS16.5	
h _{nom}	Nominal embedment depth:	[mm]	40	55	50	60	75	
Tensi	on loads: steel failure							
$N_{Rk,s}$	Tension steel characteristic resistance:	[kN]	18,6	18,6	32,6	51,2	115,8	
γMs	Partial safety factor:1)	[-]			1,5			
Tensi	on loads: pull-out failure in concrete							
$N_{Rk,p}$	Characteristic resistance in C20/25 cracked and uncracked concrete:	[kN]	4,0		2)			
	C30/37	[-]	1,16	1,16	1,16	1,14	1,13	
ψ_{c}	C40/45	[-]	1,29	1,29	1,28	1,25	1,24	
	C50/60	[-]	1,40	1,40	1,39	1,34	1,33	
Tensi	on loads: concrete cone and splitting failure							
h _{ef}	Effective embedment depth:	[mm]	29	42	37	44	56	
k _{ucr,N}	Factor for uncracked concrete:	[-]			11,0			
k _{cr,N}	Factor for cracked concrete:	[-]			7,7			
S _{cr,N}	Critical spacing (concrete cone failure):	[mm]			3,0 x h _{ef}			
C _{cr,N}	Critical edge distance (concrete cone failure):	[mm]			1,5 x h _{ef}			
S _{cr,sp}	Critical spacing (splitting failure):	[mm]	87	126	111	132	168	
C _{cr,sp}	Critical edge distance (splitting failure):	[mm]	44	63	56	66	84	
Yinst	Robustness:	[-]	1,2	1,2	1,2	1,2	1,2	

 ¹⁾ In absence of other national regulations
 2) Pull-out failure is not decisive

Table C2: Characteristic values to shear loads of design method A according to EN 1992-4

Charac	cteristic values of resistance to shear loads o	f design	Performance			
metho	d A		EUS7.5	EUS10.5	EUS12.5	EUS16.5
h _{nom}	Nominal embedment depth:	[mm]	40 55	50	60	75
Shear I	oads: steel failure without lever arm					
$V_{Rk,s}$	Characteristic resistance:	[kN]	9,3	16,3	25,6	57,9
k ₇	Ductility factor:	[-]	0,80	0,80	0,80	0,80
γMs	Partial safety factor: 1)	[-]			1,25	
Shear I	oads: steel failure with lever arm					
M^0 _{Rk,s}	Characteristic bending moment:	[Nm]	15,2	35,3	69,3	235,9
ΥMs	Partial safety factor: *)	[-]			1,25	
Shear I	oads: concrete pry-out failure					
k ₈	Pray-out factor:	[-]	0,8	1,2	1,0	1,6
Y inst	Installation safety factor: 1)	[-]			1,0	
Shear I	oads: concrete edge failure					
lf	Effective anchorage depth under shear loads:	[mm]	29	37	44	56
d _{nom}	Outside anchor diameter:	[mm]	6	8	10	14
Y inst	Installation safety factor: *)	[-]			1,2	

¹⁾ In absence of other national regulations

Anchor ESSVE EUS	
Performances	Annex C1
Characteristic values for tension and shear force in concrete	

<u>Table C3: Characteristic values to tension loads in precast, prestressed hollow core slabs C30/37 of design method A according to EN 1992-4</u>

Charac	teristic values of resistance to tension loads of design method A		Performance		
Onarao	teriotic values of resistance to teriological loads of design metriod A			EUS7.5	5
h _{nom}	Nominal embedment depth:	[mm]		35	
Tension	loads: steel failure				
$N_{Rk,s}$	Tension steel characteristic resistance:	[kN]		18,7	
γMs	Partial safety factor:1)	[-]		1,5	
Tension	loads: pull-out failure in concrete	•			
$N_{Rk,p}$	Characteristic resistance in C20/25 uncracked concrete:	[kN]	3,5	4,0	4,5
Tension	loads: concrete cone and splitting failure				
h _{hollow}	Minimum thickness of concrete member:	[mm]	25	30	35
k _{ucr,N}	Factor for uncracked concrete:	[-]		11,0	
k _{cr,N}	Factor for cracked concrete:	[-]		7,7	
Scr,N	Critical spacing (concrete cone failure):	[mm]		3,0 x h _e	f
Ccr,N	Critical edge distance (concrete cone failure):	[mm]		1,5 x h _e	f
Scr,sp	Critical spacing (splitting failure):	[mm]		87	
Ccr,sp	Critical edge distance (splitting failure):	[mm]		44	
Y inst	Robustness:	[-]		1,2	

¹⁾ In absence of other national regulations

<u>Table C4: Characteristic values to shear loads in precast, prestressed hollow core slabs C30/37 of design method A according to EN 1992-4</u>

Charact	eristic values of resistance to shear loads of design method A		Performance EUS7.5
h _{nom}	Nominal embedment depth:	[mm]	35
Shear lo	ads: steel failure without lever arm	• •	1
$V_{Rk,s}$	Characteristic resistance:	[kN]	10
k ₇	Ductility factor:	[-]	0,8
γMs	Partial safety factor: 1)	[-]	1,25
Shear lo	ads: steel failure with lever arm		
M^0 Rk,s	Characteristic bending moment:	[Nm]	15,2
γMs	Partial safety factor: *)	[-]	1,25
Shear lo	ads: concrete pry-out failure		
k ₈	Pray-out factor:	[-]	1,0
Yinst	Installation safety factor: 1)	[-]	1,0
Shear lo	ads: concrete edge failure		
lf	Effective anchorage depth under shear loads:	[mm]	29
d_{nom}	Outside anchor diameter:	[mm]	6
Yinst	Installation safety factor: *)	[-]	1,2

¹⁾ In absence of other national regulations

Anchor ESSVE EUS	
Performances	Annex C2
Characteristic values for tension and shear force in prestressed hollow core slabs	

Table D1: Characteristic values to fire resistance

Fire resistance duration = 30 minutes		EUS7.5	EUS10.5	EUS12.5	EUS16.5			
Tens	Tension loads, steel failure							
$N_{Rk,s,fi,30}$	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90		
Pull	Pull-out failure							
$N_{Rk,p,fi,30}$	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50		
Con	crete cone failure **)							
$N_{\text{Rk,c,fi,30}}$	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35		
Shea	ır loads steel failure without lever arm							
$V_{Rk,s,fi,30}$	Characteristic resistance	[kN]	0.23	0.61	1.28	2.90		
Shea	Shear loads, steel failure with lever arm							
$M_{Rk,s,fi,60}$	Characteristic bending resistance	[Nm]	0.19	0.66	1.73	5.90		

Fire res	sistance duration = 60 minutes		EUS7.5	EUS10.5	EUS12.5	EUS16.5
Ten	sion loads, steel failure					
$N_{\text{Rk,s,fi,60}}$	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Pull-out failure						
$N_{\text{Rk},p,fi,60}$	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50
Con	crete cone failure **)					
$N_{\text{Rk,c,fi,60}}$	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35
Shea	ar loads, steel failure without lever arm					
$V_{Rk,s,fi,60}$	Characteristic resistance	[kN]	0.21	0.53	0.96	2.17
Shea	ar loads, steel failure with lever arm					
M _{Rk,s,fi,60}	Characteristic bending resistance	[Nm]	0.17	0.57	1.30	4.42

Fire resistance duration = 90 minutes		EUS7.5	EUS10.5	EUS12.5	EUS16.5			
Tens	Tension loads, steel failure							
$N_{Rk,s,fi,90}$	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88		
Pull	Pull-out failure							
N _{Rk,p,fi,90}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.50	2.25	3.00	7.50		
Con	crete cone failure **)							
$N_{\text{Rk,c,fi,90}}$	Character. resistance in concrete C20/25 to C50/60	[kN]	2.06	2.45	3.51	12.35		
Shea	r loads, steel failure without lever arm							
$V_{Rk,s,fi,90}$	Characteristic resistance	[kN]	0.16	0.41	0.83	1.88		
Shea	Shear loads, steel failure with lever arm							
M _{Rk,s,fi,90}	Characteristic bending resistance	[Nm]	0.13	0.44	1.13	3.83		

Anchor ESSVE EUS	
Performances	Annex D1
Characteristic values for resistance to fire in concrete	

Fire res	sistance duration = 120 minutes		EUS7.5	EUS10.5	EUS12.5	EUS16.5
Tens	sion loads, steel failure					
$N_{\text{Rk,s,fi,120}}$	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
Pull-out failure						
$N_{Rk,p,fi,120}$	Character. resistance in concrete C20/25 to C50/60	[kN]	1,20	1.80	2.40	6.00
Con	crete cone failure **)					
N _{Rk,c,fi,120}	Character. resistance in concrete C20/25 to C50/60	[kN]	1.65	1.96	2.81	9.88
Shea	r loads, steel failure without lever arm					
V _{Rk,s,fi,120}	Characteristic resistance	[kN]	0.12	0.33	0.64	1.45
Shear loads, steel failure with lever arm						
M _{Rk,s,fi,120}	Characteristic bending resistance	[Nm]	0.10	0.35	0.87	2.95

Spacii	Spacing and edge distances		EUS7.5	EUS10.5	EUS12.5	EUS16.5
S _{cr,N}	Spacing	[mm]	168	180	208	344
S _{min}	Minimum spacing	[mm]	45	50	60	100
$C_{cr,N}$	Edge distance	[mm]	84	90	104	172
C _{min}	Minimum edge distance (one side fire)	[mm]	84	90	104	172
C _{min}	Minimum edge distance (two sides fire)	[mm]	300	300	300	300
γMsp	Partial safety factor*)	[-]	1.0	1.0	1.0	1.0

 ^{*)} In absence of other national regulations
 **) As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Concrete pry-out failure	EUS7.5	EUS10.5	EUS12.5	EUS16.5	
k factor []	1	1	1	2	
According to EN 1992-4:2018, these values of k factor and the relevant values of N _{Rk,c,fi} given in the above tables have to be considered in the design.					

Concrete edge failure

The characteristic resistance $V^0_{RK,c,fi}$ in C20/25 to C50/60 concrete is determined by: $V^0_{RK,c,fi} = 0.25 \times V^0_{RK,c} \ (\le R90)$ and $V^0_{RK,c,fi} = 0.20 \times V^0_{RK,c} \ (R120)$ With $V^0_{RK,c}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to EN 1992-4:2018.

Anchor ESSVE EUS	
Performances	Annex D2
Characteristic values for resistance to fire in concrete	