

Produkttypens unika identifikationskod: Ankarmassa ESSVE HY (Chemical anchor ESSVE HY)

Tillverkare: ESSVE Produkter AB BOX 7091 164 07 Kista Sweden

info@essve.se

Europeisk teknisk bedömning (ETA)	Avsedd användning	Artikelnummer
ETA-18/0614 (2018-07-12)	Kemiskt ankare bestående av patron med injekteringsmassa ESSVE HY för påbyggnadskonstruktioner med armeringsjärn eller "tension anchor ZA" i: • betong i hållfasthetsklass C12/15 till C50/60.	Alla artikelnummer i produktgruppen omfattas av ETA:t.
ETA-18/0615 (2019-02-14)	 Kemiskt ankare bestående av patron med injekteringsmassa ESSVE HY och ett infästningsgods I stål för användning i: sprucken betong i hållfasthetsklass C20/25 till C50/60. osprucken betong i hållfasthetsklass C20/25 till C50/60. 	Alla artikelnummer i produktgruppen omfattas av ETA:t.

Europeisk teknisk bedömning (ETA)	System för bedömning och fortlöpande Europeiskt kontroll av prestanda (AVCP)		Tekniskt bedömningsorgan (TAB)	Anmält organ (NB)
ETA-18/0614 (2018-07-12)	1	EAD 330087-00-0601, (2018-04)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)
ETA-18/0615 (2019-02-14)	1	EAD 330499-00-0601, (2014-07)	DEUTSCHES INSTITUT FÜR BAUTECHNIK (DiBt)	1343 (FPC)

PRESTANDADEKLARATION Nr: 18-HY [SV]

Europeisk teknisk bedömning (ETA)	Dimension & Material	Väsentliga egenskaper	Prestanda
		Characteristic resistance under static and quasi-static loading	Annex C1
ETA-18/0614 (2018-07-12)	Rebar Ø8 to Ø32 Tension Anchor ZA M12-M24	Reaction to fire	Class A1
		Resistance to fire	Annex C2, C3
	Threaded rod M8 to M30 Rebar Ø8 to Ø32 Internal threaded rod IG-M6 to IG-M20	Characteristic resistance to tension load (static and quasi-static loading)	Annex C1, C2, C4, C5
		Characteristic resistance to shear load (static and quasi-static loading)	Annex C1, C3, C5, C7
		Displacements under short term and long- term loading	Annex C8 – C10
ETA-18/0615 (2019-02-14)		Durability	Annex B1
	Threaded rod M8 to M30 (except hot-dipped) Rebar Ø8 to Ø32	Characteristic resistance and displacements for seismic performance category C1	Annex C2, C3, C6, C7
	Threaded rod M8 to M24 (except hot-dipped)	Characteristic resistance and displacements for seismic performance category C2	NPD
	-	Content, emission and/or release of dangerous substances	NPD

Prestandan för ovanstående produkt överensstämmer med den angivna prestandan. Denna prestandadeklaration har utfärdats i enlighet med förordning (EU) nr 305/2011 på eget ansvar av den tillverkare som anges ovan.

Undertecknat på tillverkarens vägnar av:

Viktor Bukowski Product Developer/Technical expert – Fasteners

Kista 2019-03-25

[ETA's attached as appendixes]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0614 of 12 July 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE injection system HY for rebar connection

Systems for post-installed rebar connections with mortar

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

21 pages including 3 annexes which form an integral part of this assessment

EAD 330087-00-0601

European Technical Assessment ETA-18/0614 English translation prepared by DIBt

Page 2 of 21 | 12 July 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 12 July 2018

European Technical Assessment ETA-18/0614 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "ESSVE Injection system HY for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 32 mm or the tension anchor ZA from sizes M12 to M24 according to Annex A and injection mortar ESSVE HY are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Class A1	
Resistance to fire	See Annex C 2 and C 3	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-00-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

European Technical Assessment ETA-18/0614 English translation prepared by DIBt

Page 4 of 21 | 12 July 2018

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 12 July 2018 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 5 of European Technical Assessment ETA-18/0614 of 12 July 2018

English translation prepared by DIBt

Installation post installed rebar

Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2

 ESSVE Injection System HY for rebar connection
 Annex A 1

 Product description
 Annex A 1

 Installed condition and examples of use for rebars
 Annex A 1

Page 6 of European Technical Assessment ETA-18/0614 of 12 July 2018

English translation prepared by DIBt

ESSVE Injection System HY for rebar connection

Product description

Installed condition and examples of use for tension anchors ZA

Annex A 2

Page 7 of European Technical Assessment ETA-18/0614 of 12 July 2018

ESSVE Injection System HY:					
Injection mortar: ESSVE HY Typ "coaxial": 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge	Imprint: ES code, shel processing temperatu	SSVE HY, processing notes, charge- f life, hazard-code, curing- and g time (depending on the re), optional with travel scale			
Type "side-by-side": 235 ml, 345 ml and 825 ml cartridge	Imprint: Es code, shel processing temperatu	SSVE HY, processing notes, charge- f life, hazard-code, curing- and g time (depending on the re), optional with travel scale			
Static Mixer					
\Diamond	Jx))				
Piston plug and mixer extension					
Reinforcing bar (rebar): ø8 to ø32					
Tension Anchor ZA: M12 to M24	4				
000 \$ \$ 00000	00000				
ESSVE Injection System HY for rebar c	onnection				
Product description Injection mortar / Static mixer / Rebar / Te	nsion Anchor ZA	Annex A 3			

Reinforcing bar (rebar): ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25, ø28, ø32					
 Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0,05¢ ≤ h ≤ 0,07¢ (\$\overline\$: Nominal diameter of the bar; h: Rip height of the bar) 					
Table A1: Materials					
Designation	Material				
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$				
ESSVE Injection System HY for rebar connection	1				

ESSVE Injection System HY for rebar connection

Product description

Specifications Tension Anchor ZA

Annex A 5

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Fire exposure

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Use conditions (Environmental conditions):

• Structures subject to dry internal conditions or subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist

(stainless steel or high corrosion resistant steel).

• Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2 and B 3.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:

- · Dry or wet concrete.
- · It must not be installed in flooded holes.
- Hole drilling by hammer drill (HD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

ESSVE Injection System HY for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- · Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4¢, then the lap length shall be increased by the difference between the clear bar distance and 4¢.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c1 concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 φ diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

ESSVE Injection System HY for rebar connection	
Intended use	Annex B 2

Figure B2: General construction rules for tension anchors ZA

- The length of the bonded-in thread may be not be accounted as anchorage
- Only tension forces in the direction of the bar axis may be transmitted by the tension anchor ZA
- · The tension force must be transferred via an overlap joint to the reinforcement in the building part.
- The transfer of shear forces shall be ensured by appropriate additional measures, e.g shear lugs or by anchors with an European technical assessment.
- In the anchor plate, the holes for the tension anchors shall be executed as elongated holes with axis in the direction of the shear force.

1)

Table B1: Minimum concre post-installed re drilling method	Drilling aid		
Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hammar drilling (HD)	< 25 mm	$30 \text{ mm} + 0,06 \cdot \ell_{v} \geq 2 \phi$	$30 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$
	≥ 25 mm	$40 \text{ mm} + 0,06 \cdot \ell_{v} \geq 2 \phi$	$40 \text{ mm} + 0,02 \cdot \ell_{v} \geq 2 \phi$
Comprossed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ_{v}
	≥ 25 mm	60 mm + 0,08 · ℓ _v	60 mm + 0,02 · ℓ_{v}

see Annex B2, Figures B1 and Annex B3, Figure B2

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	Tension anchor	
φ	φ	ℓ _{v,max} [mm]
8 mm		1000
10 mm		1000
12 mm	M12	1200
14 mm		1400
16 mm	M16	1600
20 mm	M20	2000
22 mm		2000
24 mm		2000
25 mm	M24	2000
28 mm		2000
32 mm		2000

Table B3: Base material temperature, gelling time and curing time

	Concrete temperature		perature	Gelling working time ¹⁾	Minimum curing time in dry concrete	Minimum curing time in wet concrete
	- 5 °C	to	- 1 °C	50 min	5 h	10 h
	0 °C	to	+ 4 °C	25 min	3,5 h	7 h
	+ 5 °C	to	+ 9 °C	15 min	2 h	4 h
	+ 10 °C	to	+ 14 °C	10 min	1 h	2 h
	+ 15 °C	to	+ 19 °C	6 min	40 min	60 min
	+ 20 °C	to	+ 29 °C	3 min	30 min	60 min
	+ 30 °C	to	+ 40 °C	2 min	30 min	60 min
Cartridge temperature			perature		+5°C to +40°C	
	1) to a maximum time from starting of marter injection to completing of reher patting					

"t_{gel}: maximum time from starting of mortar injection to completing of rebar setting.

ESSVE Injectio	n System	HY for	rebar	connection
-----------------------	----------	--------	-------	------------

Intended use
Minimum concrete cover
Maximum embedment depth / working time and curing times

Annex B 4

Table B4: Dispensing tools Cartridge Hand tool **Pneumatic tool** type/size Coaxial cartridges 150, 280, 300 up to 333 ml e.g. Type H 297 or H244C e.g. Type TS 492 X Coaxial cartridges 380 up to 420 ml e.g. Type CCM 380/10 e.g. Type H 285 or H244C e.g. Type TS 485 LX Side-by-side cartridges 235, 345 ml e.g. Type CBM 330A e.g. Type H 260 e.g. Type TS 477 LX Side-by-side cartridge 825 ml e.g. Type TS 498X

All cartridges could also be extruded by a battery tool.

ESSVE Injection System HY for rebar connection	
Intended Use	Annex B 5
Dispensing tools	

A)	Bore hole dri	lling					
		Drill a hole into the base material to the s selected reinforcing bar with carbide ham (CD). In case of aborted drill hole: the dri	size and eml nmer drill (H ill hole shall	bedment depth D) or a compre be filled with m	required by the essed air drill nortar.		
		Γ	Rebar - φ	ZΑ- φ	Drill - Ø [mm]		
1			8 mm		12		
	-	Ē	10 mm		14		
			12 mm	M12	16		
			14 mm		18		
			16 mm	M16	20		
			20 mm	M20	25		
			22 mm		28		
		Ē	24 mm		32		
	Llavere en abrill (LID)		25 mm	M24	32		
	Hammer drill (HD)	Compressed air drill (CD)	28 mm		35		
		Ē	32 mm		40		
		L					
B)	Bore hole cle	aning					
МАС	: Cleaning for bore	hole diameter $d_0 \le 20$ mm and bore hole d	epth h₀ ≤ 10	0d _s			
2 a	2a.	Starting from the bottom or back of the bore (Annex B 7) a minimum of four times.	hole, blow t	he hole clean a	a hand pump		
2b	 2b. Check brush diameter (Table B5). Brush the hole with an appropriate sized wire brush d_{b,min} (Table B5) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension shall be used 2c. Finally blow the hole clean again with a hand pump (Annex B 7) a minimum of four times. 						
2c CAC	4x : Cleaning for all be	ore hole diameter and bore hole depth					
	2a.	Starting from the bottom or back of the bore compressed air (min. 6 bar) (Annex B 7) a r stream is free of noticeable dust. If the bore extension shall be used.	e hole, blow minimum of e hole groun	the hole clean two times until d is not reache	with return air d an		
2a	 2x 2						
2b 2c	 (Table B5). 2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 7) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension shall be used. 						
ESS	/E Injection System	n HY for rebar connection					
Inten Install Bore I	ded Use lation instruction: Bore hole cleaning		An	nex B 6			

Table B5 Brush RE	i: Cleanin 3:	g tools L				SDS Plus Ac	lapter:		
					d d	b	(
Bruch	vtension:	******	a a a a a a a a a a a a a a a a a a a	*****	₩ <u> </u>				
Brushe	stension:								
φ Rebar	φ Tension anchor	d₀ Drill bit - Ø	c Brus	l _b sh - Ø	d _{b,min} min. Brush - Ø		CELLULATION OF		
(mm)	(mm)	(mm)		(mm)					
8		12	RB12	13,5	12,5	Hand	pump (volume 750 ml)		
10	M12	14	RB14 DB16	15,5	14,5				
12	10112	18	BB18	20.0	18.5				
16	M16	20	BB20	22,0	20.5		• •		
20	M20	25	RB25	27.0	25.5	~~~~~~			
22		28	RB28	30,0	28,5				
24		32	RB32	34,0	32,5				
25	M24	32	RB32	34,0	32,5				
28		35	RB35	37,0	35,5	Rec. c	ompressed air tool		
32		40	RB40	43,5	40,5	hand s	slide valve (min 6 bar)		
3 M 3a	 3 Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B3) as well as for every new cartridges, a new static-mixer shall be used. 3 In case of using the mixer extension VL16/1,8, the tip of the mixer nozzle has to be cut off at position "X". 4 Prior to inserting the reinforcing bar into the filled bore hole, the position of the 								
4	4 5 Prior to dispensing into the anchor hole, squeeze out separately the mortar until it shows a consistent grey colour, but a minimum of three full strokes, and discard non-uniformly mixed adhesive components.								
ESSVE Inj Intended I Installation Preparatio	Jse instruction: (n of bar and o	em HY for rel Cleaning tools cartridge	s and	ection			Annex B 7		

D) Filling the bore hole

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.

Table B6: Piston plugs, max anchorage depth and mixer extension

	Tension	Di	rill		Cartridge: All sizes				Cartı side-by-si	ridge: de (825 ml)
Bar size	anchor	bit	- Ø	Piston plua	Hand or b	oattery tool	Pneum	atic tool	Pneumatic tool	
φ	ф	HD	CD		I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension
[mm]	[mm]	[m	m]		[cm]		[cm]		[cm]	
8		12	-	-			80		80	
10		14	-	VS14					100	VL 10/0,75
12	M12	1	6	VS16	70		100		120	_
14		1	8	VS18			100		140	-
16	M16	2	0	VS20					160	_
20	M20	25	26	VS25		VL 10/0,75	70	VL 10/0,75		
22		2	8	VS28					200	VL 16/1,8
24		3	2	VS32	50				200	
25	M24	3	2	VS32	00		50			
28		3	5	VS35			00		200	
32		4	0	VS40					200	
				1	level mar	k				
	Г]		\						
							-+-			
			ℓm							
					ly l					
						e,ges				
Injec	tion tool n	nust be	marke	ed by mo	rtar level ma	ark $\ell_{\rm m}$ and anc	horage dept	h ℓ_v resp. $\ell_{e,ges}$	s with tape or	r marker.
Quic	k estimati	on: ℓ _m	n = 1/3	3 · ℓ _v						
Cont	inue injec	tion un	til the	mortar le	vel mark $\ell_{\scriptscriptstyle m m}$ l	becomes visib	le.			
Optir	num mort	ar volu	me: ℓ	$_{m} = \ell_{v} r$	esp. $\ell_{\rm e,ges}$	$\cdot \left(1,2\cdot \frac{\phi^2}{d_0^2}-C\right)$),2 [mm]]		
ESSVE	Injection	Syste	m HY	for reba	r connectio	n				
Intende Installat	Installation instruction: Filling the bore hole							Annex B	8	

Page 18 of European Technical Assessment ETA-18/0614 of 12 July 2018

English translation prepared by DIBt

ESSVE Injection System HY for rebar connection

Intended Use Installation instruction: Inserting rebar

Annex B 9

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor α_{lb} according to Table C1.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor α_{lb}
C12/15 to C50/60	Hammer drilling and compressed air drilling	8 mm to 32 mm ZA-M12 to ZA-M24	1,0

Table C2: Reduction factor k_b for all drilling methods

Rebar - Ø		Concrete class							
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 32 mm ZA-M12 to ZA-M24					1,0				

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions

 $\mathbf{f}_{bd,PIR} = \mathbf{k}_b \cdot \mathbf{f}_{bd}$

with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes and the rebar diameter according to EN 1992-1-1:2004+AC:2010. (for all other bond conditions multiply the values by 0.7) k_b : Reduction factor according to Table C2

Rebar - Ø		Concrete class								
ф	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 32 mm ZA-M12 to ZA-M24	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
ECCVE Injection Cyr	tom LIV fo	r robor oo	nnection							
ESSVE injection Sys	/stem HY for rebar connection									
Performances										
Amplification factor of	Amplification factor of Deduction factor									
Amplification factor α_{lk}										
Design values of ultim	ate bond re	esistance f	bd PIB							

Design value of the ultimate bond stress $f_{bd,fi}$ under fire exposure for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress $f_{bd,fi}$ under fire exposure has to be calculated by the following equation:

 $\mathbf{f}_{\mathsf{bd},\mathsf{fi}} = \mathbf{k}_{\mathsf{fi}}(\mathbf{\theta}) \cdot \mathbf{f}_{\mathsf{bd},\mathsf{PIR}} \cdot \mathbf{\gamma}_{\mathsf{c}} / \mathbf{\gamma}_{\mathsf{M},\mathsf{fi}}$

 $\begin{array}{ll} \mbox{with:} & \theta \leq 364^{\circ}C \mbox{:} & k_{fi}(\theta) = 30, 34 \cdot e^{(\theta \, \cdot \, \cdot 0, 011)} / \; (f_{bd, PIR} \, \cdot \, 4, 3) \leq 1, 0 \\ & \theta > 364^{\circ}C \mbox{:} & k_{fi}(\theta) = 0 \end{array}$

f_{bd,fi} Design value of the ultimate bond stress in case of fire in N/mm²

- θ Temperature in °C in the mortar layer.
- $k_{fi}(\theta)$ Reduction factor under fire exposure.
- f_{bd,PIR} Design value of the ultimate bond stress in N/mm² in cold condition according to Table C3 considering the concrete classes, the rebar diameter and the bond conditions according to EN 1992-1-1:2004+AC:2010.
- γ_c partially safety factor according to EN 1992-1-1:2004+AC:2010
- $\gamma_{M,fi}$ partially safety factor according to EN 1992-1-2:2004+AC:2008

For evidence under fire exposure the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent ultimate bond stress $f_{bd,fi}$.

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

Performances

Design value of bond strength $f_{\text{bd},\text{fi}}$ under fire exposure

Annex C 2

Table C4:	Characteristic tension strength for tension anchor ZA under fire exposure,									
	concrete cl	asses C12/	15 to C50/60), according to T	echnical Report T	R 020				
Tension Ancho	•			M12	M16	M20	M94			
Steel, zinc plated	d (ZA vz)			W112	WIO	W20	WIZ-4			
	R30				20)				
Characteristic	R60		i [N/mm²] —		15					
steel strength	R90	${f \sigma}_{{\sf Rk},{\sf s},{\sf fi}}$			13					
	R120			10						
Stainless Steel (ZA A4 or Z	A HCR)								
	R30				30)				
Characteristic	R60		[N]/mm2]							
steel strength	R90	$\mathbf{O}_{Rk,s,fi}$	F _{Rk,s,fi} [IN/mm²] 20							
	R120			16						
Design value The design valu equation:	e of the s	teel strer	igth O_{Rd,s,fi} O _{Rd,s,fi} under	under fire ex	(posure is to be calculated	d by the following)			
$\sigma_{\mathrm{Rd,s,fi}} =$	$\sigma_{_{Rk,s,fi}}$ / $\gamma_{_{M,}}$	fi								

with:

$\sigma_{{\scriptscriptstyleRk},{\scriptscriptstyles},{\scriptscriptstylefi}}$	characteristic steel strength according to Table C4
ŶΜ,fi	partially safety factor according to EN 1992-1-2:2004+AC:2008

ESSVE Injection System HY for rebar connection	
Performances	Annex C 3
Design value of the steel strength $\sigma_{\rm Rd,s,fi}$ for tension anchor ZA under fire exposure	

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0615 of 14 February 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Essve Injection system HY for concrete Product family Bonded fastener for use in concrete to which the construction product belongs **ESSVE** Produkter AB Manufacturer Esbogatan 14 164 74 KISTA **SCHWEDEN** Manufacturing plant ESSVE Plant No. 671 This European Technical Assessment 25 pages including 3 annexes which form an integral part contains of this assessment EAD 330499-00-0601 This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of This version replaces ETA-18/0615 issued on 4 September 2018

European Technical Assessment ETA-18/0615 English translation prepared by DIBt

Page 2 of 25 | 14 February 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 25 | 14 February 2019

Specific Part

1 Technical description of the product

The "Essve Injection system HY for concrete" is a bonded anchor consisting of a cartridge with injection mortar ESSVE HY and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance to tension load	See Annex			
(static and quasi-static loading)	C 1, C 2, C 4, C 5			
Characteristic resistance to shear load	See Annex			
(static and quasi-static loading)	C 1, C 3, C 5, C 7			
Displacements	See Annex			
(static and quasi-static loading)	C 8, C 9, C 10			
Characteristic resistance for seismic performance	See Annex			
category C1	C 2, C 3, C 5, C 7			
Characteristic resistance and displacements for seismic	See Annex			
performance category C2	C 2, C 3, C 8			

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Page 4 of 25 | 14 February 2019

European Technical Assessment ETA-18/0615

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 14 February 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

Page 6 of European Technical Assessment ETA-18/0615 of 14 February 2019

Sealing/Screw cap Sealing/Screw cap Without travel scale	Π
235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")	
Sealing/Screw cap	_
Static Mixer	
Essve Injection system HY for concrete Product description Injection system	

Та	ble A1: Materials					
	Designation	Material				
Stee	I, zinc plated (Steel acc. to EN 100	87:1998 or EN 10263:	2001)	1		
zinc	plated \ge 5 µm acc. to EN ISO 4042:1	999 od hot-dip galvanis	ed ≥	40 μm acc. to EN ISO 1461:2009	9 and	
EN I	SO 10684:2004+AC:2009 or sherard	ized ≥ 40 µm acc. to EN	I ISO	17668:2016		
			4.6	f _{uk} =400 N/mm ² ; f _{yk} =240 N/mm ² ; A	$_{5}$ > 8% fracture elongation	
		Property class	4.8	f _{uk} =400 N/mm ² ; f _{yk} =320 N/mm ² ; A	$_{5}$ > 8% fracture elongation	
1	Anchor rod	acc. to	5.6	f _{uk} =500 N/mm ² ; f _{yk} =300 N/mm ² ; A	$_{5}$ > 8% fracture elongation	
		EN ISO 898-1:2013	5.8	f _{uk} =500 N/mm²; f _{yk} =400 N/mm²; A	$_{5}$ > 8% fracture elongation	
			8.8	f _{uk} =800 N/mm ² ; f _{yk} =640 N/mm ² ; A	$_{5}$ > 12% fracture elongation ³⁾	
		Property class	4	for anchor rod class 4.6 or 4.8		
2	Hexagon nut	acc. to	.cc. to 5 for anchor rod class 5.6 or 5.8			
		EN ISO 898-2:2012	8	for anchor rod class 8.8		
3a	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Steel, zinc plated, hot-	dip ga	alvanised or sherardized		
3b	Filling washer			I		
4	Internal threaded anchor rod	Property class acc. to	5.8	f _{uk} =500 N/mm ² ; f _{yk} =400 N/mm ² ;	$A_5 > 8\%$ fracture elongation	
		EN ISO 898-1:2013	8.8	f _{uk} =800 N/mm²; f _{yk} =640 N/mm²;	$A_5 > 8\%$ fracture elongation	
Stair	less steel A2 (Material 1.4301 / 1.4	1303 / 1.4307 / 1.4567 c	or 1.4	541, acc. to EN 10088-1:2014)		
and Stair	1less steel A4 (Material 1.4401 / 1.4	1404 / 1.4571 / 1.4362 o	or 1.4	578, acc. to EN 10088-1:2014)		
	`	Property class	50	f _{uk} =500 N/mm ² ; f _{vk} =210 N/mm ² ; A	$_{5}$ > 12% fracture elongation ³⁾	
1	Anchor rod ¹⁾⁴⁾	acc. to	70	f _{uk} =700 N/mm ² ; f _{vk} =450 N/mm ² ; A	$_{5}$ > 12% fracture elongation ³⁾	
		EN ISO 3506-1:2009	80	f _{uk} =800 N/mm ² ; f _{vk} =600 N/mm ² ; A	$_{5}$ > 12% fracture elongation ³⁾	
		Property class	50	for anchor rod class 50	5	
2	Hexagon nut ¹⁾⁴⁾	acc. to	acc. to 70 for anchor rod class 70			
		EN ISO 3506-1:2009 80 for anchor rod class 80				
3a 3h	Washer, (z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000) Filling washer ⁵⁾	A2: Material 1.4301 / 1 A4: Material 1.4401 / 1	.4303 .4404	8 / 1.4307 / 1.4567 or 1.4541, EN 4 / 1.4571 / 1.4362 or 1.4578, EN	10088-1:2014 10088-1:2014	
- 55		Property class	50	f500 N/mm ² : f210 N/mm ² :	$A_{\rm c} > 8\%$ fracture elemention	
4	Internal threaded anchor rod 1)2)	acc. to	70	$f_{uk} = 700 \text{ N/mm}^2$; $f_{vk} = 450 \text{ N/mm}^2$;	$A_5 > 8\%$ fracture elongation	
Lliada		EN ISO 3506-1:2009		EN 10088 1: 0014)		
Fign	corrosion resistance steel (mater	ai 1.4529 or 1.4565, ac	<u></u>	EN 10088-1: 2014)	100/ fracture classics ³	
	A	Property class	50	$f_{uk}=500 \text{ N/mm}^2$; $f_{yk}=210 \text{ N/mm}^2$; A	100 (fracture elongation ³)	
	Anchor rod /	ACC. 10		$I_{uk} = 700 \text{ N/mm}^2$; $I_{yk} = 450 \text{ N/mm}^2$; A	12% if acture elongation $\frac{1}{2}$	
		EN 100 3300-1.2003	50	Tuk=600 N/IIII ² , Tyk=600 N/IIII ² , A	5 > 12% fracture elongation	
	11	Property class	50	for anchor rod class 50		
2	Hexagon nut	ACC. 10	70	for anchor rod class 70		
	Weeher		00			
За	(z.B.: EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000)	Material 1.4529 or 1.45	565, a	acc. to EN 10088-1: 2014		
3b	Filling washer	Duran anta di		[
4	Internal threaded anchor rod 1) 2)	Property class acc. to	50	f _{uk} =500 N/mm ² ; f _{yk} =210 N/mm ² ;	$A_5 > 8\%$ fracture elongation	
	1	EN ISO 3506-1:2009	70	$ _{t_{uk}}=700 \text{ N/mm}^2; t_{yk}=450 \text{ N/mm}^2;$	$A_5 > 8\%$ tracture elongation	
1)	Property class 70 for anchor rods up to M	24 and Internal threaded a	Inchor	rods up to IG-M16,		
²⁾ f	or IG-M20 only property class 50					
3)	$\lambda_5 > 8\%$ fracture elongation if <u>no</u> requirem	ent for performance categ	ory C2	2 exists		
4) 5)	Property class 80 only for stainless steel	A4				
5)	-Illing washer only with stainless steel A4					
Ess	sve Injection system HY for con	ncrete				
┝						
Pro Mat	duct description erials threaded rod and internal t	hreaded rod				

Reir	Reinforcing bar Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 24, Ø 25, Ø 28, Ø 32								
	h _{ef}								
	 Minimum value of related rip area f_{R,min} ac Bib height of the bar shall be in the range 	cording to EN 1992-1-1:2004+AC:2010 0.05d < h < 0.07d							
	(d: Nominal diameter of the bar; h: Rip he	ight of the bar)							
Tab	le A2: Materials								
Part	Designation	Material							
Reinf	orcing bars								
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA						
Essy	ve Injection system HY for concrete								
Proc Mate	Product description Materials reinforcing bar								

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30 (except hot-dip galvanised rods), Rebar Ø8 to Ø32.
- Seismic action for Performance Category C2: M12 to M24 (except hot-dip galvanised rods).

Base materials:

- · Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- II: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)
- III: 40 °C to +160 °C (max long term temperature +100 °C and max short term temperature +160 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- (zinc coated steel, stainless steel A2 resp. A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4 or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The anchorages are designed in accordance to:
 - EN 1992-4:2018 and Technical Report TR055

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water): M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Essve Injection system HY for concrete

Intended Use Specifications Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of element	$d = d_{nom} [mm] =$	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	28	30	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f [mm] =	9	12	14	18	22	26	30	33
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40 ²⁾	60	100	170	250	300
Minimum thickness of member h_{min} [mm] h_{ef} + 30 mm \geq 100 mm				$h_{ef} + 2d_0$					
Minimum spacing	s _{min} [mm]	40	50	60	75	95	115	125	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	60	65	75	80

¹⁾ For application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d₁ + 1mm or alternatively the annular gap between fixture and anchor rod shall be filled force-fit with mortar.

²⁾ Maximum Torque moment for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for rebar

Rebar size	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Diameter of element	d = d _{nom} [mm] =	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	25	32	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	96	100	112	128
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} +	2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	60	70	70	75	85

Table B3: Installation parameters for Internal threaded rod

Anchor size		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Internal diameter of sleeve	d ₂ [mm] =	6	8	10	12	16	20	
Outer diameter of sleeve ¹⁾	$d = d_{nom} [mm] =$	10	12	16	20	24	30	
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35	
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120	
Ellective ellibedillent depth	h _{ef,max} [mm] =	200	240	320	400	480	600	
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22	
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100	
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40	
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} +	- 2d ₀		
Minimum spacing	s _{min} [mm]	50	60	75	95	115	140	
Minimum edge distance	c _{min} [mm]	40	45	50	60	65	80	
$\frac{1}{1}$ With matrix threads apporting to EN 1992 1.8:2005, AC:2009								

With metric threads according to EN 1993-1-8:2005+AC:2009

Essve Injection system HY for concrete

Intended Use Installation parameters Annex B 2

Table B4	Table B4: Parameter cleaning and setting tools															
2	1111111111111111111		2													
Threaded Rod	Rebar	Internal threaded rod	d ₀ Drill bit - Ø HD, HDB, CA	d Brus	l₀ h - Ø	d _{b,min} min. Brush - Ø	Piston plug	Instal	latio of	on direction piston plu	n and use Jg					
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]										
M8			10	RB10	11,5	10,5		_								
M10	8	IG-M6	12	RB12	13,5	12,5		N.L.								
M12	10	IG-M8	14	RB14	15,5	14,5		NO	plug	required						
	12		16	RB16	17,5	16,5										
M16	14	IG-M10	18	RB18	20,0	18,5	VS18									
	16		20	RB20	22,0	20,5	VS20	1								
M20		IG-M12	22	RB22	24,0	22,5	VS22	1			I	h s				
	20		25	RB25	27,0	25,5	VS25	h _{ef} >	h _{ef} >	h _{ef} >			L .			
M24		IG-M16	28	RB28	30,0	28,5	VS28					n _{ef} >	n _{ef} >	n _{ef} >		n _{ef} >
M27			30	RB30	31,8	30,5	VS30	250 n	250 mm	250 mm	250 mm					
	24 / 25		32	RB32	34,0	32,5	VS32									
M30	28	IG-M20	35	RB35	37,0	35,5	VS35	1								
	32		40	RB40	43,5	40,5	VS40									
MAC - Ha Drill bit dia Drill hole o Only in no	MAC - Hand pump (volume 750 ml) Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 ds Only in pon-cracked concrete															
$\begin{tabular}{ c c } \hline & & & & & & & & & & & & & & & & & & $																
Essve Injection system HY for concrete Intended Use Cleaning and setting tools						Annex	В 3									
e.cu.ing u																

Installation instructions									
Drilling of the bore	hole								
	Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted. In case of aborted drill hole: The drill hole shall be filled with mortar.								
Attention! Standing water in the bore hole must be removed before cleaning.									
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)									
4x	 2a. Starting from the bottom or back of the bore hole, blow the hole clean by a h (Annex B 3) a minimum of four times. 								
	 2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion. If the bore hole ground is not reached with the brush, a brush extension must be used. 								
4x	2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.								
CAC: Cleaning for a	Il bore hole diameter in uncracked and cracked concrete								
2x	2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.								
	 2b. Check brush diameter (Table B4). Brush the hole with an appropr > d_{b,min} (Table B4) a minimum of two times in a twisting motion. If the bore hole ground is not reached with the brush, a brush external 	iate sized wire brush ension must be used.							
2x	 2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used. 								
	After cleaning, the bore hole has to be protected against re-co an appropriate way, until dispensing the mortar in the bore ho the cleaning has to be repeated directly before dispensing the In-flowing water must not contaminate the bore hole again.	ontamination in ble. If necessary, e mortar.							
Essve Injection sys	tem HY for concrete								
Intended Use Installation instruction	าร	Annex B 4							

Installation instructions (continuation)									
	3. Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.								
ter her -i	4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.								
min. 3 full stroke	5. Prior to dispensing into the anchor hole, squeeze out separately a r strokes and discard non-uniformly mixed adhesive components unt consistent grey colour.	ninimum of three full il the mortar shows a							
	6 Starting from the bottom or back of the cleaned anchor hole, fill the approximately two-thirds with adhesive. Slowly withdraw the static mole fills to avoid creating air pockets. If the bottom or back of the areached, an appropriate extension nozzle must be used. Observe t given in Table B5.	hole up to mixing nozzle as the nchor hole is not he gel-/ working times							
	 Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications: Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm 								
	 8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material. 								
	 Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges). 								
+20°C	Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B5).								
Tinst.	 After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer. 								
Essve Injection sy	stem HY for concrete								
Intended Use Installation instruction	ons (continuation)	Annex B 5							

Table B5:								
Concrete	tempe	erature	Gelling working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete			
0 °C	to	+ 4 °C	25 min	3,5 h	7 h			
+ 5 °C	to	+ 9 °C	15 min	2 h	4 h			
+ 10 °C	to	+ 14 °C	10 min	1 h	2 h			
+ 15 °C	to	+ 19 °C	6 min	40 min	80 min			
+ 20 °C	to	+ 29 °C	3 min	30 min	60 min			
+ 30 °C	to	+ 40 °C	2 min	30 min	60 min			
Cartridge	tempe	erature		+5°C to +40°C				
Cartridge temperature +5°C to +40°C								
Intended Use Curing time	9				Annex B 6			

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods Size M 8 M 10 M 12 M 16 M 20 M24 M 27 M 30 Cross section area As [mm²] 36,6 58 84,3 157 245 353 459 561 Characteristic tension resistance, Steel failure 1) Steel, Property class 4.6 and 4.8 $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 15 (13) 23 (21) 34 63 98 141 184 224 $N_{Rk,s}$ Steel, Property class 5.6 and 5.8 [kN] 18 (17) 29 (27) 42 78 122 176 230 280 Steel, Property class 8.8 29 (27) 46 (43) 125 $N_{\mathsf{Rk},\mathsf{s}}$ [kN] 67 196 282 368 449 Stainless steel A2, A4 and HCR, Property class 50 N_{Rk,s} 42 79 123 177 230 281 [kN] 18 29 N_{Rk,s} Stainless steel A2, A4 and HCR, Property class 70 [kN] 26 41 59 110 171 247 $N_{\mathsf{Rk},\mathsf{s}}$ Stainless steel A4 and HCR, Property class 80 [kN] 29 46 67 126 196 282 --Characteristic tension resistance, Partial factor²⁾ Steel, Property class 4.6 2,0 [-] YMs.N Steel, Property class 4.8 1.5 [-] γMs.N Steel, Property class 5.6 [-] 2.0 γMs,N Steel, Property class 5.8 [-] 1,5 γMs.N Steel, Property class 8.8 γMs,N [-] 1,5 Stainless steel A2, A4 and HCR, Property class 50 [-] 2,86 γMs,N Stainless steel A2, A4 and HCR, Property class 70 [-] 1,87 γMs,N Stainless steel A4 and HCR, Property class 80 γMs.N [-] 1.6 Characteristic shear resistance, Steel failure 1) V⁰_{Rk,s} Steel, Property class 4.6 and 4.8 [kN] 9 (8) 14 (13) 20 38 59 85 110 135 arm Steel, Property class 5.6 and 5.8 V⁰_{Rk,s} 21 115 140 [kN] 9 (8) 15 (13) 39 61 88 lever Steel, Property class 8.8 V⁰_{Rk,s} [kN] 15 (13) 23 (21) 34 63 98 141 184 224 Stainless steel A2, A4 and HCR, Property class 50 $V^{0}_{Rk,s}$ [kN] 9 15 21 39 61 88 115 140 Without V⁰_{Rk,s} Stainless steel A2, A4 and HCR, Property class 70 [kN] 13 20 30 55 86 124 --V⁰_{Rk,s} Stainless steel A4 and HCR, Property class 80 [kN] 15 23 34 63 98 141 -Steel, Property class 4.6 and 4.8 M⁰_{Rk,s} 15 (13) 30 (27) 52 133 260 449 666 900 [Nm] Steel, Property class 5.6 and 5.8 M⁰_{Rk,s} 19 (16) 37 (33) 324 1123 [Nm] 65 166 560 833 arm M⁰Rk,s 30 (26) 266 519 896 1797 Steel, Property class 8.8 [Nm] 60 (53) 105 1333 lever Stainless steel A2, A4 and HCR, Property class 50 832 M⁰_{Bk.s} [Nm] 19 37 66 167 325 561 1125 With Stainless steel A2, A4 and HCR, Property class 70 M⁰_{Rk.s} [Nm] 26 52 92 232 454 784 _ -Stainless steel A4 and HCR, Property class 80 30 59 105 266 519 896 M⁰_{Rk,s} [Nm] --Characteristic shear resistance, Partial factor 2) Steel, Property class 4.6 1.67 γMs,V [-] Steel, Property class 4.8 [-] 1.25 γMs,V Steel, Property class 5.6 [-] 1,67 γMs.V Steel, Property class 5.8 [-] 1,25 γMs,V Steel, Property class 8.8 [-] 1.25 γMs,V Stainless steel A2, A4 and HCR, Property class 50 2,38 [-] γ_{Ms.V} Stainless steel A2, A4 and HCR, Property class 70 [-] 1,56 γMs,V Stainless steel A4 and HCR, Property class 80 [-] 1,33 γMs.V

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hotdip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Essve Injection system HY for concrete

Performances

Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Annex C 1

Table C2: Cha	aracteristic valu smic action (pe	ues of tensi rformance	on loac categoi	ls und rv C1-	der st +C2)	atic, q	uasi-	static	actio	n and	l
Anchor size threaded	rod		J	M 8	M 10	M 12	M 16	M 20	M24	M27	M30
Steel failure											
Characteristic tension re	eistance	N _{Rk,s}	[kN]			A _s •	f _{uk} (or se	e Table	C1)		
	5313121100	N _{Rk,eq,C1}	[kN]				1,0 •	$N_{Rk,s}$			
Characteristic tension re Steel, strength class 8.8 Stainless Steel A4 and I Strength class ≥70	esistance, HCR,	N _{Rk,eq,C2}	[kN]	N	PA		1,0 •	N _{Rk,s}		NF	PA
Partial factor		γMs,N	[-]				see Ta	ble C1			
Combined pull-out and	d concrete failure										
Characteristic bond resi	stance in non-cracked co	oncrete C20/25	1		1						
80°C/50°C		$ au_{Rk,ucr}$	[N/mm ²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C/72°C	and flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm ²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C/100°C		$ au_{\text{Rk,ucr}}$	[N/mm ²]	12	11	11	10	9,5	9,0	9,0	9,0
Characteristic bond resi	stance in cracked concre	ete C20/25		_	_					_	
Temperature range I:		$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq,C1}}$	[N/mm ²]	7,0	7,5	8,0	9,0	8,5	7,0	7,0	7,0
	Dry, wet concrete	τ _{Rk, eq,C2}	[N/mm ²]	E O	PA 65	3,6	3,5	3,3	2,3	NI 6.0	A 60
1 1 emperature range II: 120°C/72°C	and	$\tau_{\rm Rk,cr} = \tau_{\rm Rk, eq,C1}$	[N/mm ²]	0,0 NI	0,5 PA	7,0	7,5	28	2.0	0,0 NF	ο,0 ⊃Δ
Temperature range III:	Tiooded bore hole	$\tau_{\rm Rk, eq, C2}$ $\tau_{\rm Rk, cr} = \tau_{\rm Rk, eq, C1}$	[N/mm ²]	5.5	5.5	6.0	6.5	6.0	5.5	5.5	5.5
160°C/100°C		τ _{Bk. eq.C2}	[N/mm ²]	N	PA	2,5	2,7	2,5	1,8	NF	PA
		C25/30)				1,0	02			
	novoto	C30/37	7				1,0	04			
only static or quasi-stat	ic actions)	C35/45	5				1,0	07			
Ψο	,	C40/50) -				1,0	08			
		C50/60	<u> </u>				1,0	10			
Concrete cone failure		0.50/60	J				١,	10			
Non-cracked concrete		k _{ucr.N}	[-]				11	,0			
Cracked concrete		k _{cr,N}	[-]				7,	,7			
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}			
Axial distance		S _{cr.N}	[mm]				2 c	cr.N			
Splitting								.,			
	h/h _{ef} ≥ 2,0						1,0	h _{ef}			
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2	$2 \cdot h_{ef} \left(2 \right)$	$5 - \frac{h}{h_{ef}}$)		
	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			
Installation factor											
for dry and wet concrete	e (MAC)	γinst	[-]		1	,2		No Per	rformance	Assessed	(NPA)
for dry and wet concrete	e (CAC)	γinst	[-]				1,	,0			
for flooded bore hole (C	AC)	γinst	[-]				1,	,4			
Essve Injection s	ystem HY for conc	rete							_		
Performances Characteristic values seismic action (perfo	s of tension loads und ormance category C1+	er static, quasi-s ·C2)	static actio	n and					Ann	ex C 2	2

Table C3: Characteristic va seismic action (p	lues of s erforma	shear nce c	[·] loads catego	s und ory C1	er stati ∣+C2)	c, qua	asi-sta	tic ac	tion and	ł
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm							1	1		
Characteristic shear resistance Steel, strength class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]			0,6	• A _s • f _{uk}	(or see T	able C1)		
Characteristic shear resistance Steel, strength class 5.6, 5.8 and 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]			0,5	• A _s • f _{uk}	(or see T	able C1)		
Characteristic shear resistance (Seismic C1)	$V_{Rk,s,eq,C1}$	[kN]				0,7	70 • V ⁰ _{Rk,s}			
Characteristic shear resistance (Seismic C2), Steel, strength class 8.8 Stainless Steel A4 and HCR, Strength class ≥70	V _{Rk,s,eq,C2}	[kN]	N	PA		0,70	• V ⁰ _{Rk,s}		N	PA
Partial factor	γMs,V	[-]				see	Table C1			
Ductility factor	k ₇	[-]					1,0			
Steel failure with lever arm	•									
	M ⁰ _{Rk,s}	[Nm]			1,2	$oldsymbol{\cdot} W_{el}oldsymbol{\cdot} f_{uk}$	(or see T	able C1)		
Characteristic bending moment	M ⁰ _{Rk,s,eq,C1}	[Nm]			No P	erformar	ice Asses	sed (NPA	.)	
	M ⁰ _{Rk,s,eq,C2}	[Nm]			No P	erformar	ice Asses	sed (NPA)	
Partial factor	γMs,V	[-]				see	Table C1			
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γinst	[-]					1,0			
Concrete edge failure										
Effective length of fastener	lf	[mm]			min(h _{ef} ; 1	l2•d _{nom})			min(h _{ef} ;	300mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γinst	[-]					1,0			
Factor for annular gap	α_{gap}	[-]				0,	5 (1,0) ¹⁾			
¹⁾ Value in brackets valid for filled annular gab required) between ar	nchor an	d clearan	ce hole i	n the fixtur	e. Use of	f special f	lling wash	ner Annex A	3 is

Essve Injection system HY for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1+C2)

Annex C 3

Table C4: Cl	naracteristic values	of tens	sion loa	ids und	er stati	c and q	uasi-sta	atic acti	on
Anchor size internal th	readed anchor rods			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure ¹⁾						11			
Characteristic tension re	sistance,	Neka	[kN]	10	17	29	42	76	123
Steel, strength class 5.8		• •nk,5	[,,,,]	10	.,			10	
Partial factor	ristanco	γMs,N	[-]			1	,5		
Steel, strength class 8.8	sistance,	N _{Rk,s}	[kN]	16	27	46	67	121	196
Partial factor		γms,N	[-]			1	,5	I	
Characteristic tension re	sistance,	Naka	[kN]	14	26	41	59	110	124
Stainless Steel A4 and H	ICR, Strength class 70 ²⁷	I INK,S			20		00		
Partial factor	Leonarota cono failuro	γMs,N	[-]			1,87			2,86
Combined pull-out and	toncrete cone failure	000/05							
Temperature range I:		020/20							
80°C/50°C		$\tau_{\text{Rk,ucr}}$	[N/mm ²]	17	16	15	14	13	13
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	14	14	13	12	12	11
Temperature range III: 160°C/100°C		$\tau_{\text{Rk,ucr}}$	[N/mm²]	11	11	10	9,5	9,0	9,0
Characteristic bond resis	stance in cracked concrete C20/	25							
Temperature range I: 80°C/50°C		$\tau_{Rk,cr}$	[N/mm²]	7,5	8,0	9,0	8,5	7,0	7,0
Temperature range II: 120°C/72°C	Dry, wet concrete and flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	6,5	7,0	7,5	7,0	6,0	6,0
Temperature range III: 160°C/100°C		$ au_{Rk,cr}$	[N/mm²]	5,5	6,0	6,5	6,0	5,5	5,5
		C2	25/30			1,	02		
		Ca	30/37			1,	04		
Increasing factors for co	ncrete	Ca	35/45			1,0	07		
Ψc			10/50 15/55			1,	08		
			45/55 TO/CO			1,0	10		
Concrete cone failure		0	50/60			Ι,	10		
Non-cracked concrete		k	[_]			11	0		
Cracked concrete		k	[-]			7	7		
Edge distance		Carth	[mm]			1 5	,, h.,		
Axial distance		Ser N	[mm]			20	or N		
Splitting failure		UCI,N	[]				CI,IN		
	h/h _{ef} ≥ 2,0					1,0	h _{ef}		
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]			$2 \cdot h_{ef} \left(2 \right)$	$5-\frac{h}{h_{ef}}$		
	$h/h_{ef} \leq 1.3$	1				2.4	h _{of}		
Avial distance		6	[mm]			2.0			
Installation factor		3 _{cr,sp}	[]			20	cr,sp		
for dry and wet concrete	(MAC)	Vinct	[-]		1.2		No Perforr	nance Asses	sed (NPA)
for dry and wet concrete		11130	[]		-,-	1	0		
		Yinst	[-]				,0		
¹⁾ Fastening sci threaded rod. and the faste ²⁾ For IG-M20 s	rews or threaded rods (incl. nut a . The characteristic tension resis ning element. .trength class 50 is valid	Yinst and washe tance for s	er) must cor steel failure	nply with the of the giver	e appropriat n strength c	e material a lass are valie	,4 nd property d for the inte	class of the ernal threade	internal ed rod
Essve Injection s Performances Characteristic values	ystem HY for concrete s of tension loads under static	c and qua	asi-static a	ction			-	Annex C	2 4

Anchor size for internal threaded a	nchor rods		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Steel failure without lever arm ¹⁾					•			
Characteristic shear resistance, Steel, strength class 5.8	V ⁰ _{Rk,s}	[kN]	5	9	15	21	38	61
Partial factor	γм₅,∨	[-]		1		1,25	1	
haracteristic shear resistance, teel. strength class 8.8	V ⁰ _{Rk,s}	[kN]	8	14	23	34	60	98
artial factor	γMs,V	[-]			•	1,25		
haracteristic shear resistance, itainless Steel A4 and HCR, itrength class 70 ²⁾	V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor	γMs,∨	[-]			1,56			2,38
uctility factor	k ₇	[-]				1,0		
teel failure with lever arm ¹⁾								
haracteristic bending moment, teel, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
artial factor	γ _{Ms,V}	[-]			_	1,25		
haracteristic bending moment, teel, strength class 8.8	$M^{O}_{Rk,s}$	[Nm]	12	30	60	105	267	519
artial factor	γMs,∨	[-]				1,25		
haracteristic bending moment, tainless Steel A4 and HCR, trength class 70 ²⁾	M ⁰ _{Rk,s}	[Nm]	11	26	52	92	233	456
artial factor	γMs,∨	[-]			1,56			2,38
oncrete pry-out failure								
actor	k ₈	[-]				2,0		
stallation factor	γinst	[-]				1,0		
oncrete edge failure								
ffective length of fastener	lr	[mm]		m	in(h _{ef} ; 12 ∙ d _n	om)		min(h _{ef} ; 300mr
utside diameter of fastener	d _{nom}	[mm]	10	12	16	20	24	30
stallation factor	γinst	[-]				1,0		
 Pastering screws or thread threaded rod. The character and the fastening element. ²⁾ For IG-M20 strength class 	50 is valid	esistance for	r steel failure	ייינייט שונה נה of the give	e appropriate n strength cla	ass are valid	for the inter	has of the interna

Table C6: Cha	racterist	tic val	ues of te	nsion le	oads dorv	und C1)	er sta	atic,	quas	si-sta	tic ad	ction	and	
Anchor size reinforcing	har		orrorman	<u></u>	<u>ge.</u> ,	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure	Jui				20	210	212	214	210	020	024	025	0 20	2 32
Characteristic tension res	istance		$N_{Rk,s}$	[kN]					A _s ·	• f _{uk} ¹⁾				
			N _{Rk,s, eq}	[kN]					1,0 • 4	$A_{s} \cdot f_{uk}^{1}$				
Cross section area			As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor			γMs,N	[-]					1,	4 ²⁾				
Combined pull-out and	concrete fai	lure												
Characteristic bond resist	tance in non-	cracked o	concrete C20/2	25			1		1					
l emperature range I: 80°C/50°C	Drv. wet co	ncrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	14	14	14	14	13	13	13	13	13	13
1emperature range II: 120°C/72°C	and flooded bore	e hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	13	12	12	12	12	11	11	11	11	11
1 emperature range III: 160°C/100°C			τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,5	9,0	9,0	9,0	9,0	9,0	8,5	8,5
Characteristic bond resist	tance in cracl	ked conci	rete C20/25	1					1					
80°C/50°C	Dry, wet co	ncrete	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm ²]	5,5	5,5	6,0	6,5	6,5	6,5	6,5	7,0	7,0	7,0
1emperature range II: 120°C/72°C	and flooded bord	e hole	$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm ²]	4,5	5,0	5,0	5,5	5,5	5,5	5,5	6,0	6,0	6,0
1emperature range III: 160°C/100°C			$\tau_{\text{Rk,cr}} = \tau_{\text{Rk, eq}}$	[N/mm²]	4,0	4,5	4,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0
			C2	5/30					1,	,02				
Increasing factors for con	crete		C30	0/37						,04				
(only static or quasi-static	actions)		C3	5/45					1,	,07				
Ψc			C40	0/50 E/EE					1,	,08				
			C4:	0/00					۱, ۱	10				
Concrete cone failure			0.00	5/00					١,	,10				
Non-cracked concrete			k .	[_]					1.	1.0				
Cracked concrete			K	[-]					7	7				
Edge distance			Ncr,N	[] [mm]					1.6	,, ; h				
			C _{cr,N}						1,5	Dillef				
Axial distance			S _{cr,N}	[mm]					20	C _{cr,N}				
Splitting				1	1									
	h/h _{ef} ≥ 2,0								1,0) h _{ef}				
Edge distance	2,0 > h/h _{ef} >	1,3	C _{cr,sp}	[mm]				2	$\cdot h_{ef} \left(2 \right)$	$4,5 - \frac{h}{h_{ef}}$	-)			
	h/h _{ef} ≤ 1.3								2.4	1 h _{ef}	,			
Avial distance	., ,			[mm]					20	<u>, , , , , , , , , , , , , , , , , , , </u>				
Installation factor			Bcr,sp	[[]					2.	-cr,sp				
for dry and wet concrete			Vinet	[-]			12			No	Performa	ance Ass	essed (N	
for dry and wet concrete			Vinet	[-]			.,=		1	.0				
for flooded bore hole (CA	.C)		Yinst	[-]					1	<u>,4</u>				
¹⁾ f _{uk} shall be taken ²⁾ in absence of nat	from the spe ional regulati	cification: on	s of reinforcing	bars										
Essve Injection sy	vstem HY	for con	crete									nno	/ () e	
Characteristic values seismic action (perfor	of tension lo mance cate	oads und gory C1	der static, qu)	asi-static a	action a	and					д	(inte)		

Table C7: Characteristic value seismic action (per	es of shea formance	ar loac cateç	ds ui gory	nder C1)	stati	c, qu	asi-s	static	acti	on a	nd	
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel failure without lever arm												
	V ⁰ _{Rk,s}	[kN]					0,50 · /	A _s ∙ f _{uk} ¹⁾				
Characteristic shear resistance	V _{Rk,s,eq}	[kN]					0,35 · /	$A_{s} \cdot f_{uk}^{(1)}$				
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γмѕ,∨	[-]					1,	5 ²⁾				
Ductility factor	k ₇	[-]					1	,0				
Steel failure with lever arm												
Obevectovictic bending memory	M ⁰ _{Rk,s}	[Nm]					1.2 • W	$I_{\rm el} \cdot f_{\rm uk}^{(1)}$				
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			N	o Perfoi	mance	Assess	ed (NP	A)		
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	896	1534	2155	3217
Partial factor	ŶMs,V	[-]					1,	5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]					2	,0				
Installation factor	γinst	[-]					1	,0				
Concrete edge failure												
Effective length of fastener	lf	[mm]			min(ł	n _{ef} ; 12 •	d _{nom})			min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γinst	[-]					1	,0				
Factor for annular gap	α_{gap}	[-]					0,5 (1,0) ³⁾				
 ¹⁾ f_{uk} shall be taken from the specifications of reinford ²⁾ in absence of national regulation ³⁾ Value in brackets valid for filled annular gab between the second s	ing bars en anchor and d	clearance	hole in	the fixtu	re. Use	of speci	al filling	washer	Annex	A 3 is re	quired	

Essve Injection system HY for concrete

Performances

Characteristic values of shear loads under static, quasi-static action and seismic action (performance category C1)

Annex C 7

Anchor size threa	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	crete C20/25 unde	er static and qua	si-statio	action						
Temperature range I:	δ _{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete	C20/25 under sta	atic, quasi-static	and sei	ismic C	1 action	l				
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete	C20/25 under se	ismic C2 action								
All temperature	$\delta_{N,eq(DLS)}$ -factor	[mm/(N/mm ²)]	N		0,120	0,100	0,100	0,120	NI	<u>م</u>
ranges	$\delta_{N,eq(ULS)}$ -factor	[mm/(N/mm ²)]	אי ך	FA	0,140	0,150	0,110	0,150		-A
$\delta_{N0} = \delta_{N0}$ -factor $\delta_{N\infty} = \delta_{N\infty}$ -factor	· τ; δ _{N,eq(} · τ; δ _{N,eq(}	$ DLS = \delta_{N,eq(DLS)}$ -facto $ ULS = \delta_{N,eq(ULS)}$ -facto	or · τ; or · τ;	τ: acti	on bond	stress for	r tension			
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ Table C9: D	τ; δ _{N,eq} τ; δ _{N,eq}	$D_{(DLS)} = \delta_{N,eq(DLS)}$ -facto $D_{(ULS)} = \delta_{N,eq(ULS)}$ -facto under shear lo	or · τ; or · τ; Dad¹⁾ (1	τ: acti	ed rod)	r tension			
$\delta_{N0} = \delta_{N0} \text{-factor}$ $\delta_{N\infty} = \delta_{N\infty} \text{-factor}$ Table C9: Di Anchor size threa	τ; δ _{N,eq} τ; δ _{N,eq}	$ DLS = \delta_{N,eq(DLS)}$ -facto $ ULS = \delta_{N,eq(ULS)}$ -facto under shear le	or · τ; or · τ; oad ¹⁾ (i	τ: acti thread M 10	ed rod) M 16	r tension M 20	M24	M 27	М 30
$\begin{split} \delta_{\text{NO}} &= \delta_{\text{NO}} \text{-factor} \\ \delta_{\text{N\infty}} &= \delta_{\text{N\infty}} \text{-factor} \end{split}$ Table C9: Di Anchor size thread	τ; δ _{N,eq} τ; δ _{N,eq} ded rod cracked concrete	$ DLS = \delta_{N,eq(DLS)}$ -facto $ ULS = \delta_{N,eq(ULS)}$ -facto under shear lo e C20/25 under s	or · τ; or · τ; Dad ¹⁾ (1 M 8 tatic, qu	τ: acti thread M 10 Jasi-stat	ed rod M 12 tic and s) M 16 seismic	M 20	M24	M 27	M 30
$\delta_{N0} = \delta_{N0} - factor$ $\delta_{N\infty} = \delta_{N\infty} - factor$ Table C9: Di Anchor size threat Non-cracked and All temperature	τ; δ _{N,eq(} τ; δ _{N,eq(} isplacements 0 ded rod 0 cracked concrete δ _{V0} -factor	$under shear le}{0}$	or · τ; or · τ; 0ad¹⁾ (1 <u>M 8</u> tatic, qu	τ: acti thread M 10 Jasi-stat	ed rod M 12 tic and s 0,05) M 16 seismic 0,04	M 20 C1 acti 0,04	M24 on	M 27 0,03	M 30 0,03
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ isplacements $\delta_{N,eq}$ ded rod $\sigma_{N,eq}$ cracked concrete δ_{Vo} -factor δ_{Vo} -factor δ_{Vo} -factor	$DLS) = \delta_{N,eq(DLS)} - factor (ULS) = \delta_{N,eq(ULS)} - factor under shear log 2 C20/25 under s [mm/kN] [mm/kN]$	or · τ; or · τ; Dad¹⁾ (1 <u>M 8</u> tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and s 0,05 0,08) M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	M24 on 0,03 0,05	M 27 0,03 0,05	M 30 0,03 0,05
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ isplacements $\delta_{N,eq}$ ded rod δ_{Vo} -factor δ_{Vo} -factor δ_{Vo} -factor C20/25 under set	under shear le $under shear le$	or · τ; or · τ; 0ad¹⁾ (i <u>M 8</u> tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-stat 0,06 0,08	ed rod M 12 tic and s 0,05 0,08) M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,06	M24 0,03 0,05	M 27 0,03 0,05	M 30 0,03 0,05
$ δ_{N0} = δ_{N0}$ -factor $ δ_{N\infty} = δ_{N\infty}$ -factor Table C9: Di Anchor size threa Non-cracked and All temperature anges Cracked concrete All temperature	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ isplacements $\delta_{N,eq}$ ded rod δ_{Vo} -factor $\delta_{V,eq}(DLS)$ -factor $\delta_{V,eq}(DLS)$ -factor	under shear le $under shear le$ $e C20/25 under s$ $[mm/kN]$ $ismic C2 action$ $[mm/kN]$	or · τ; or · τ; Dad¹⁾ (1 <u>M 8</u> tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-stat 0,06 0,08	ed rod M 12 tic and s 0,05 0,08) M 16 seismic 0,04 0,06	M 20 C1 acti 0,04 0,09	M24 ion 0,03 0,05	M 27 0,03 0,05	M 30 0,03 0,05
$\delta_{N0} = \delta_{N0} - factor$ $\delta_{N\infty} = \delta_{N\infty} - factor$ Table C9: Di Anchor size threa Anchor sis a sec threa Anchor si	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ isplacements $\delta_{N,eq}$ ded rod $\sigma_{N,eq}$ cracked concrete δ_{Vo} -factor δ_{Vo} -factor σ_{Vo} -factor δ_{Vo} -factor $\delta_{V,eq}$ (DLS)-factor $\delta_{V,ep}$ (ULS)-factor $\sigma_{V,ep}$ (ULS)-factor	under shear le $under shear le$ $c20/25 under s$ $[mm/kN]$ $[mm/kN]$ $[mm/kN]$ $[mm/kN]$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and 1 0,05 0,08 0,27 0,27) M 16 seismic 0,04 0,06 0,13 0,14	M 20 C1 acti 0,04 0,06 0,09 0,10	M24 0,03 0,05 0,06 0,08	M 27 0,03 0,05	M 30 0,03 0,05 PA
$\begin{split} \delta_{N0} &= \delta_{N0} \text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty} \text{-factor} \end{split}$ $\begin{aligned} \textbf{Table C9: Di} \\ \textbf{Anchor size thread} \\ Anchor size th$	$\begin{array}{c} \tau; & \delta_{N,eq}(\\ \tau; & \delta_{N,eq}(\\ \hline \tau; & \delta_{N,eq}(\\ \hline \\ \hline$	$\begin{array}{l} {}_{(\text{ULS})} = \delta_{\text{N,eq(DLS)}}\text{-factor}\\ {}_{(\text{ULS})} = \delta_{\text{N,eq(ULS)}}\text{-factor}\\ {}_{(\text{ULS})} = \delta_{\text{N,eq(ULS)}}\text{-factor}\\ {}_{(\text{mm/kN)}} \\ \\ {}_{(\text{mm/kN)}} \\ \\ {}_{(\text{mm/kN)}} \\ \\ {}_{(\text{mm/kN)}} \\ \\ {}_{(mm$	or · τ; or · τ; Dad¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and s 0,05 0,08 0,27 0,27) M 16 seismic 0,04 0,06 0,13 0,14	M 20 C1 acti 0,04 0,09 0,10	M24 0,03 0,05 0,06 0,08	M 27 0,03 0,05	M 30 0,03 0,05
$\begin{split} \delta_{N0} &= \delta_{N0}\text{-factor} \\ \delta_{N\infty} &= \delta_{N\infty}\text{-factor} \\ \end{split}$ $\begin{aligned} \textbf{Table C9: Dial Structure and structure anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete anges} \\ \hline \textbf{Cracked concrete anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete anges} \\ \hline \textbf{Cracked concrete anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline \textbf{Cracked concrete} \\ \hline \textbf{All temperature anges} \\ \hline All temp$	τ; $\delta_{N,eq}$ τ; $\delta_{N,eq}$ isplacements isplacements ded rod isplacements δ_{V0} -factor δ_{Vo} -factor δ_{Vo} -factor $\delta_{V,eq}(DLS)$ -factor $\delta_{V,ep}(DLS)$ -factor $\delta_{V,ep}(DLS)$ -factor e displacement V ; V ; V ; (DLS)-factor V ; ystem HY for cor	$\begin{array}{l} \text{DLS} = \delta_{N,eq(DLS)} \text{-factor}\\ \text{under shear location}\\ \text{e C20/25 under s}\\ \hline \\ \text{[mm/kN]}\\ \hline \\ \text{[mm/kN]}\\ \hline \\ \text{ismic C2 action}\\ \hline \\ \\ \hline \\ \\ \text{[mm/kN]}\\ \hline \\ \hline \\ \text{[mm/kN]}\\ \hline \\ \hline \\ \text{V: action shear}\\ \hline \\ \\ \text{hcrete}\\ \end{array}$	or - τ; or - τ; 0ad ¹⁾ (1 M 8 tatic, qu 0,06 0,09	τ: acti thread M 10 Jasi-sta 0,06 0,08	ed rod M 12 tic and s 0,05 0,08 0,27 0,27	stress for M 16 seismic 0,04 0,06 0,13 0,14	M 20 C1 acti 0,04 0,06 0,09 0,10	M24 0,03 0,05 0,06 0,08	M 27 0,03 0,05	M 30 0,03 0,05

Table C10: D	isplacem	nents under	tensio	n load	d ¹⁾ (rel	bar)						
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25 under statio	c and qu	asi-sta	tic act	on			•			
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,042	0,043	0,045	0,048
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,054	0,055	0,058	0,063
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,044	0,045	0,047	0,050
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,056	0,057	0,060	0,065
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,163	0,164	0,172	0,186
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,168	0,169	0,177	0,192
Cracked concrete	C20/25 ur	nder static, qu	asi-stati	c and s	seismio	c C1 ac	tion					
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,099	0,103	0,108
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,128	0,133	0,141
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,103	0,107	0,113
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,133	0,138	0,148
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,385	0,399	0,425
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,396	0,410	0,449
Anchor size reinfo			Ø8	Ø 10	Ø 12	<i>y</i> Ø14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
For concrete C20/	25 under s	static, quasi-si	tatic and	d seism	nic C1 a	action						
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04
¹⁾ Calculation of th $\delta_{V0} = \delta_{V0}$ -factor $\delta_{V\infty} = \delta_{V\infty}$ -factor	ie displacem ∙ V; ∙ V;	ient V: action she	ar load									
Essve Injection s	system HY	for concrete								Ann	ex C s	9
usplacements (reba	ar)											

Anchor size Inter	nal threaded ro	od	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Non-cracked con	crete C20/25 ui	nder static and qua	si-static ad	ction	•	•		
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,044	0,045	0,049	0,053	0,056	0,062
Femperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,126	0,131	0,142	0,153	0,163	0,179
160°C/100°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,129	0,135	0,146	0,157	0,168	0,184
racked concrete	C20/25 under	static and quasi-st	atic action					_
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,170	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,111	0,114	0,121	0,127	0,133	0,143
Femperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C/100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424
Table C13: D	isplacement	s under shear le	oad ¹⁾ (Int	ernal thr	eaded r	od)		
Table C13: D	isplacement	s under shear lo	Dad ¹⁾ (Int M6 G	ernal thi -M 8 IC	eaded r	od) IG-M 12	IG-M 16	IG-M 20
Table C13: D Anchor size Intern Ion-cracked and	isplacement nal threaded ro cracked concr	s under shear le d IG ete C20/25 under s	Dad ¹⁾ (Int M 6 G Ig	ernal thi -M 8 IC uasi-stati	eaded r -M 10	od) IG-M 12	IG-M 16	IG-M 20
Table C13: D Anchor size Intern Ion-cracked and	isplacement nal threaded rc cracked concr δ _{vo} -factor	s under shear le d IG ete C20/25 under s [mm/kN] 0	Dad ¹⁾ (Int M 6 G tatic and q	ernal thr -M 8 IC uasi-stati	readed r A-M 10 c action 0,06	od) IG-M 12	IG-M 16 0,04	IG-M 20 0,04
Table C13: D Anchor size International Internatione Internatione International Internatione Internatione	isplacement nal threaded ro cracked concr δ_{V0} -factor $\delta_{V\infty}$ -factor	ts under shear le od IG- ete C20/25 under s [mm/kN] 0 [mm/kN] 0	Dad ¹⁾ (Int M 6 IG tatic and q	ernal thr -M 8 IC uasi-stati	readed r A-M 10 c action 0,06 0,08	Od) IG-M 12 0,05 0,08	IG-M 16 0,04 0,06	IG-M 20 0,04 0,06

Essve Injection system HY for concrete

Performances

Displacements (Internal threaded anchor rod)

Annex C 10