

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0617 of 11 December 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Injection system ESSVE ONE or ESSVE ONE-ICE for concrete

Bonded fastener for use in concrete

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

31 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601

ETA-18/0617 issued on 15 February 2019

European Technical Assessment ETA-18/0617

Page 2 of 31 | 11 December 2019

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-18/0617

Page 3 of 31 | 11 December 2019

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection System ESSVE ONE, ESSVE ONE-ICE for concrete" is a bonded anchor consisting of a cartridge with injection ESSVE ONE or ESSVE ONE-ICE and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \varnothing 8 to \varnothing 32 mm or an internal threaded anchor rod IG-M6 to IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load	See Annex
(static and quasi-static loading)	C 1 to C 3, C 5, C 7
Characteristic resistance to shear load	See Annex
(static and quasi-static loading)	C1, C 4, C 6, C 8
Displacements	See Anne
(static and quasi-static loading)	C 9 to C 11
Characteristic resistance and displacements for seismic	See Anne
performance categories C1	C 12 to C 16
Characteristic resistance and displacements for seismic performance categories C2	No performance assessed
Durability	See Annex B 1

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

European Technical Assessment ETA-18/0617

Page 4 of 31 | 11 December 2019

English translation prepared by DIBt

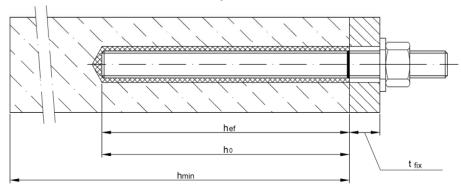
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

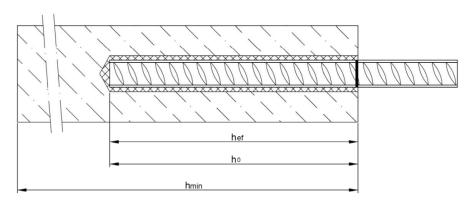
The system to be applied is: 1

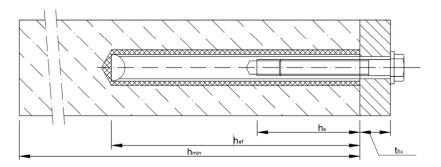
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 December 2019 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department


beglaubigt: Baderschneider


Installation threaded rod M8 up to M30

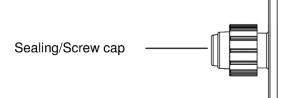
Installation reinforcing bar Ø8 up to Ø32

Installation internal threaded anchor rod IG-M6 up to IG-M20

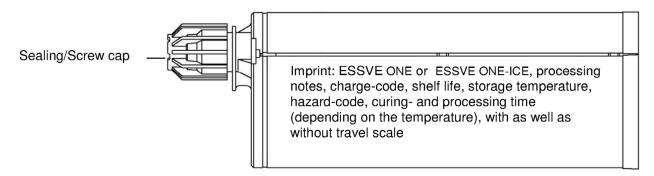
 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

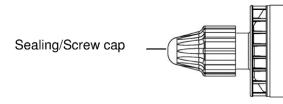
 h_0 = depth of drill hole


 h_{min} = minimum thickness of member

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Product description Installed condition	Annex A 1

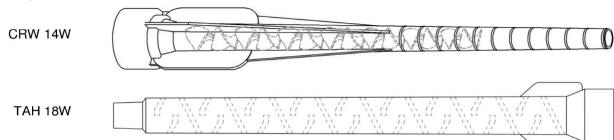

Cartridge: ESSVE ONE or ESSVE ONE-ICE

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

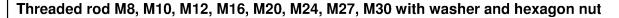


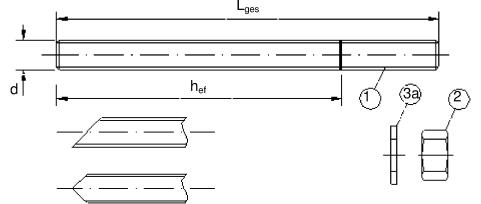
Imprint: ESSVE ONE or ESSVE ONE-ICE, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

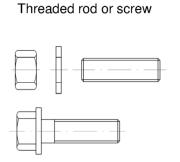


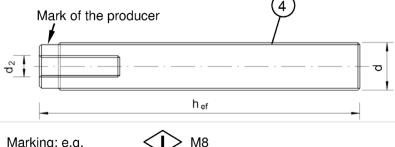
165 ml and 300 ml cartridge (Type: "foil tube")


Imprint: ESSVE ONE or ESSVE ONE-ICE, processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale


Static Mixer

Product description
Injection system
Annex A 2





Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Internal threaded anchor rod IG-M6, IG-M8, IG-M10, IG-M12, IG-M16, IG-M20

Marking: e.g.

Marking Internal thread Mark

8M Thread size (Internal thread) Α4 additional mark for stainless steel

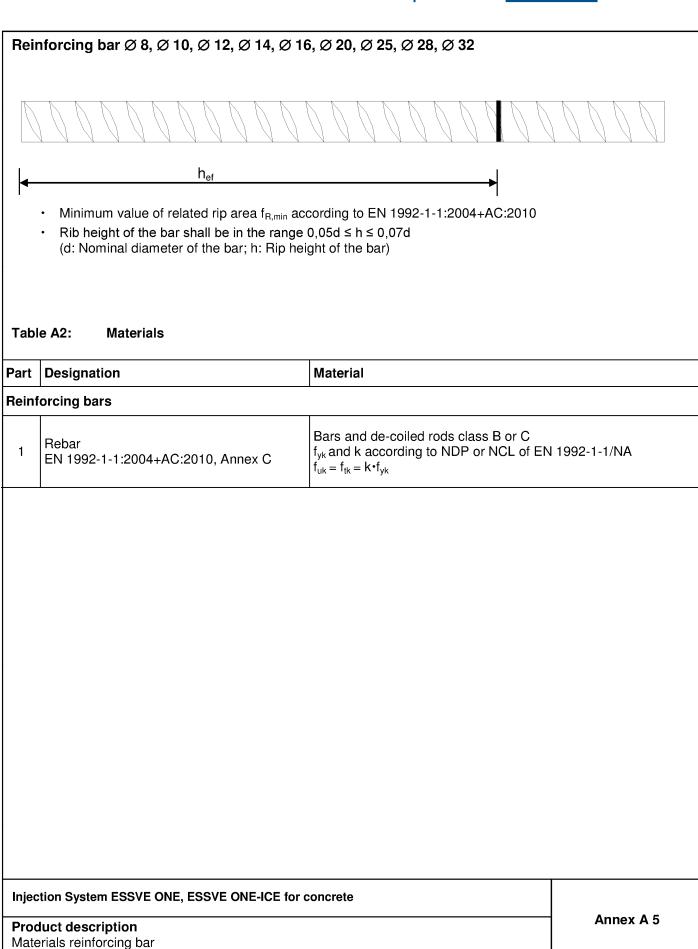
HCR additional mark for high-corrosion resistance steel

Filling washer and mixer reduction nozzle for filling the annular gap between anchor rod and fixture

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

Product description

Threaded rod, internal threaded rod and filling washer


Annex A 3

art	Designation	Material				
		EN 10087:1998 or EN 102		1)		
Zil	nc plated ≥ 5 µm	acc. to EN ISO 4042:1999 acc. to EN ISO 1461:2009		LICO 10004:0004.	A.C.2000 or	
		acc. to EN ISO 17668:2016		130 10004.2004+	AC.2009 01	
<u> </u>	- 10 μπ		<u>, </u>	Characteristic	Characteristic	Elongation at
		Property class		tensile strength	yield strength	fracture
			4.6	f _{uk} = 400 N/mm ²	$f_{yk} = 240 \text{ N/mm}^2$	A ₅ > 8%
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%
•		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	$f_{yk} = 300 \text{ N/mm}^2$	A ₅ > 8%
		LIN 130 090-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{vk} = 400 N/mm ²	A ₅ > 8%
				f _{uk} = 800 N/mm ²	$f_{vk} = 640 \text{ N/mm}^2$	A ₅ ≥ 8%
			4	for threaded rod c	1 7	1 5
2	Hexagon nut	acc. to EN ISO 898-2:2012	5	for threaded rod c	lass 5.6 or 5.8	
		EN 130 696-2.2012	8	for threaded rod c	lass 8.8	
 За	Washer	Steel, zinc plated, hot-di				
		(e.g.: EN ISO 887:2006,				N ISO 7094:200
3b	Filling washer	Steel, zinc plated, hot-di	p gaiva	Characteristic	Characteristic	Elongation at
	lakawa alakawa alak	Property class		tensile strength	yield strength	fracture
4	Internal threaded anchor rod	acc. to	5.8	f _{uk} = 500 N/mm ²	$f_{VK} = 400 \text{ N/mm}^2$	A ₅ > 8%
		EN ISO 898-1:2013		f _{uk} = 800 N/mm ²	f _{vk} = 640 N/mm ²	A ₅ > 8%
taiı	nless steel A4 (Material 1.4	301 / 1.4307 / 1.4311 / 1.45 401 / 1.4404 / 1.4571 / 1.43	62 or 1	.4578, acc. to EN	10088-1:2014)	•
ugr	i corrosion resistance ste	el (Material 1.4529 or 1.4565	o, acc.	to EN 10088-1: 20 Characteristic		The marchine at
		Property class		tensile strength	Characteristic yield strength	Elongation at fracture
1	Threaded rod ¹⁾³⁾		50		f _{vk} = 210 N/mm ²	A ₅ ≥ 8%
'	Threaded fod	acc. to		f _{uk} = 700 N/mm ²	f _{vk} = 450 N/mm ²	A ₅ ≥ 8%
		EN ISO 3506-1:2009		f _{uk} = 800 N/mm ²	$f_{yk} = 600 \text{ N/mm}^2$	A ₅ ≥ 8%
				for threaded rod c	1 /	
2	Hexagon nut 1)3)	acc. to	70	for threaded rod c	lass 70	
		EN ISO 3506-1:2009	80	for threaded rod c	lass 80	
3а	Washer	A2: Material 1.4301 / 1.4 A4: Material 1.4401 / 1.4 HCR: Material 1.4529 or (e.g.: EN ISO 887:2006,	404 / 1 1.456	.4571 / 1.4362 or 5, acc. to EN 1008	1.4578, acc. to EN 8-1: 2014	10088-1:2014
3b	Filling washer	Stainless steel A4, High				11 100 7004.200
<i></i>	Timing washel	Property class	501103	Characteristic	Characteristic	Elongation at
			50	tensile strength $f_{UK} = 500 \text{ N/mm}^2$	yield strength $f_{vk} = 210 \text{ N/mm}^2$	fracture A ₅ > 8%
	Linternal threaded	acc. to	50		$f_{vk} = 210 \text{ N/mm}^2$	<u> </u>
4	Internal threaded anchor rod ¹⁾²⁾	EN ISO 3506-1:2009	70	$f_{UK} = 700 \text{ N/mm}^2$	$11 = 45() N/mm^2$	$A_5 > 8\%$

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Product description Materials threaded rod and internal threaded rod	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Seismic action for Performance Category C1: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Cracked concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32, IG-M6 to IG-M20.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16, IG-M6 to IG-M10.
- · Hole drilling by hammer (HD), hollow (HDB) or compressed air drill mode (CD).
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Specifications	Annex B 1

Table B1: Installation parameters for threaded rod									
Anchor size		М8	M10	M12	M16	M20	M24	M27	M30
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	16	20	24	27	30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Maximum torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30	0 mm ≥ 1	00 mm	$h_{ef} + 2d_0$				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Outer diameter of anchor	d _{nom} [mm] =	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective embedment depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Enective embedment depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	580	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm							
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Table B3: Installation parameters for internal threaded anchor rod

Size internal threaded anchor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Internal diameter of anchor	d ₂ [mm] =	6	8	10	12	16	20
Outer diameter of anchor 1)	d _{nom} [mm] =	10	12	16	20	24	30
Nominal drill hole diameter	d ₀ [mm] =	12	14	18	22	28	35
Effective embedment depth	h _{ef,min} [mm] =	60	70	80	90	96	120
Effective embedment depth	h _{ef,max} [mm] =	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d _f [mm] =	7	9	12	14	18	22
Maximum torque moment	T _{inst} [Nm] ≤	10	10	20	40	60	100
Thread engagement length min/max	I _{IG} [mm] =	8/20	8/20	10/25	12/30	16/32	20/40
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	50	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	50	60	80	100	120	150

¹⁾ With metric threads according to EN 1993-1-8:2005+AC:2009

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Installation parameters	Annex B 2

Table B4: Parameter cleaning and setting tools										
7	and the second second			-	**************************************	A STATE OF THE PARTY OF THE PAR				
Threaded Rod	Rebar	Internal threaded Anchor rod	d₀ Drill bit - Ø HD, HDB, CA	d Brusl		d _{b,min} min. Brush - Ø	Piston plug	Installatio of	n direction piston plu	
[mm]	[mm]	[mm]	[mm]		[mm]	[mm]		1		1
M8			10	RBT10	12	10,5				
M10	8	IG-M6	12	RBT12	14	12,5		No piston p	lua roquiro	
M12	10	IG-M8	14	RBT14	16	14,5		ινο ριδιστί μ	nug require	iu
	12		16	RBT16	18	16,5				
M16	14	IG-M10	18	RBT18		18,5	VS18			
	16		20	RBT20	22	20,5	VS20			
M20	20	IG-M12	24	RBT24	26	24,5	VS24	h _{ef} >	h _{ef} >	
M24		IG-M16	28	RBT28	30	28,5	VS28	250 mm	250 mm	all
M27	25		32	RBT32	34	32,5	VS32	230 111111	230 111111	
M30	28	IG-M20	35	RBT35	37	35,5	VS35			
	32		40	RBT40	41,5	40,5	VS40			

MAC - Hand pump (volume 750 ml)

Drill bit diameter (d_0): 10 mm to 20 mm Drill hole depth (h_0): < 10 d_{nom} Only in non-cracked concrete

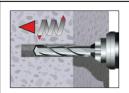
CAC - Rec. compressed air tool (min 6 bar)

Drill bit diameter (d₀): all diameters

Piston plug for overhead or horizontal installation VS

Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush RBT


Drill bit diameter (do): all diameters

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions

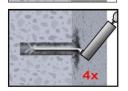
Drilling of the bore hole

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1, B2, or B3), with hammer (HD), hollow (HDB) or compressed air (CD) drilling. The use of a hollow drill bit is only in combination with a sufficient vacuum permitted.

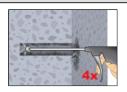
In case of aborted drill hole: The drill hole shall be filled with mortar

Attention! Standing water in the bore hole must be removed before cleaning.

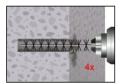
MAC: Cleaning for bore hole diameter $d_0 \le 20$ mm and bore hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)



2a. Starting from the bottom or back of the bore hole, blow the hole clean by a hand pump 1) (Annex B 3) a minimum of four times.


2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

If the bore hole ground is not reached with the brush, a brush extension must be used.



2c. Finally blow the hole clean again with a hand pump (Annex B 3) a minimum of four times.

CAC: Cleaning for all bore hole diameter in uncracked and cracked concrete

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

2b. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush > d_{b,min} (Table B4) a minimum of four times in a twisting motion.

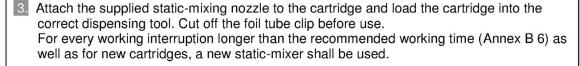
If the bore hole ground is not reached with the brush, a brush extension must be used.

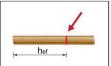
2c. Finally blow the hole clean again with compressed air (min. 6 bar) (Annex B 3) a minimum of four times until return air stream is free of noticeable dust. If the bore hole ground is not reached an extension must be used.

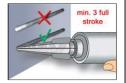
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

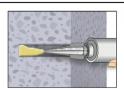
Injection System ESSVE ONE, ESSVE ONE-ICE for concrete

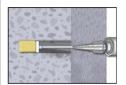
Intended Use
Installation instructions


Annex B 4

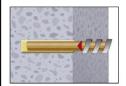

¹⁾ It is permitted to blow bore holes with diameter between 14 mm and 20 mm and an embedment depth up to $10d_{nom}$ also in cracked concrete with hand-pump.


Installation instructions (continuation)

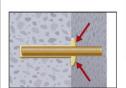



4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges it must be discarded a minimum of six full strokes.



6. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. If the bottom or back of the anchor hole is not reached, an appropriate extension nozzle must be used. Observe the gel-/ working times given in Annex B 6.


7. Piston plugs and mixer nozzle extensions shall be used according to Table B4 for the following applications:

- Horizontal assembly (horizontal direction) and ground erection (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Overhead assembly (vertical upwards direction): Drill bit-Ø d₀ ≥ 18 mm

8. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor shall be free of dirt, grease, oil or other foreign material.

9. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod shall be fixed (e.g. wedges).

10. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 6).

11. After full curing, the add-on part can be installed with up to the max. torque (Table B1 or B3) by using a calibrated torque wrench. It can be optional filled the annular gap between anchor and fixture with mortar. Therefor substitute the washer by the filling washer and connect the mixer reduction nozzle to the tip of the mixer. The annular gap is filled with mortar, when mortar oozes out of the washer.

Injection System ESS	SVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Installation instructio	ns (continuation)	Annex B 5

Table B5:	Maximum working time and minimum curing time
	ESSVE ONE

Concre	Concrete temperature		Gelling- / working time	Minimum curing time in dry concrete 1)				
-10 °C	to	-6°C	90 min ²⁾	24 h ²⁾				
-5 °C	to	-1°C	90 min	14 h				
0 °C	to	+4°C	45 min	7 h				
+5 °C	to	+9°C	25 min	2 h				
+ 10 °C	to	+19°C	15 min	80 min				
+ 20 °C	to	+29°C	6 min	45 min				
+ 30 °C	to	+34°C	4 min	25 min				
+ 35 °C	to	+39°C	2 min	20 min				
+ 40 °C		;	1,5 min	15 min				
Cartrido	ge temp	perature	+5°C to +40°C					

¹⁾ In wet concrete the curing time must be doubled.
2) Cartridge temperature must be at min. +15°C.

Maximum working time and minimum curing time ESSVE ONE-ICE Table B6:

Concre	te tem	perature	Gelling- / working time	Minimum curing time in dry concrete 1)
-20 °C	to	-16°C	75 min	24 h
-15 °C	to	-11°C	55 min	16 h
-10 °C	to	-6°C	35 min	10 h
-5 °C	to	-1°C	20 min	5 h
0 °C	to	+4°C	10 min	2,5 h
+5 °C	to	+9°C	6 min	80 Min
+	10 °C		6 min	60 Min
Cartrido	ge tem	perature	-20°C to	+10°C

In wet concrete the curing time must be doubled.

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Intended Use Curing time	Annex B 6

Т	able C1: Characteristic values for st	teel tens	sion re	esistand	e and s	teel sh	ear res	sistanc	e of th	readed	I
Si	ze			M8	M10	M12	M16	M20	M24	M27	M30
Cr	ross section area	[mm²]	36,6	58	84,3	157	245	353	459	561	
Characteristic tension resistance, Steel failure 1)											
St	eel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	$N_{Rk,s}$	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	-	-
St	ainless steel A4 and HCR, class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282	-	-
Ö	haracteristic tension resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,N}	[-]				1,5	5			
St	Stainless steel A2, A4 and HCR, class 50 Y _{Ms,N} [-] 2,86										
Stainless steel A2, A4 and HCR, class 70 Y _{Ms,N} [-] 1,87											
St	Stainless steel A4 and HCR, class 80 Y _{Ms,N} [-] 1,6										
CI	haracteristic shear resistance, Steel failure)									ı
۲	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	$V^{0}_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
lever	Steel, Property class 8.8	$V^0_{\rm Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
nt	Stainless steel A2, A4 and HCR, class 50	V ⁰ _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Without	Stainless steel A2, A4 and HCR, class 70	$V_{\rm Rk,s}$	[kN]	13	20	30	55	86	124	-	-
≥	Stainless steel A4 and HCR, class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	-	-
	Steel, Property class 4.6 and 4.8	M ^o Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
		M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
With lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk.s	[Nm]	19	37	66	167	325	561	832	1125
Wit		M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	-	-
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	-	-
CI	haracteristic shear resistance, Partial factor	2)									
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	Y _{Ms,V}	[-]				1,2	5			
St	ainless steel A2, A4 and HCR, class 50	Y _{Ms,V}	[-]				2,3	8			
St	ainless steel A2, A4 and HCR, class 70	Y _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	Y _{Ms,V}	[-]				1,3	3			
- 11											

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

²⁾ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

Table C2: C	Characteristic values	for Concrete	cone failure	and Splitting with all kind of action
Anchor size Concrete cone fa	ailure			All Anchor types and sizes
Non-cracked cond		k _{ucr,N}	[-]	11,0
Cracked concrete	Cracked concrete		[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values for Concrete cone failure and Splitting with all kind of action	Annex C 2

Table	C3:	Characte	eristic values of	tension load	ls under st	atic ar	ıd qua	si-stat	ic acti	on				
		e threaded ro	d			М8	M10	M12	M16	M20	M24	M27	M30	
Steel fa			stance	N _{Rk,s}	[kN]			A - f.	or s)	ee Tab	le C1)			
$ \begin{array}{ccc} \text{Characteristic tension resistance} & \text{N}_{\text{Rk,s}} & \text{[kN]} \\ \text{Partial factor} & \text{$\gamma_{\text{Ms,N}}$} & \text{[-]} \\ \end{array} $						A _s • f _{uk} (or see Table C1) see Table C1								
			concrete failure	/ IVIS,IN	[]				300 10	ibic O1				
		•	ance in non-cracl	ked concrete C	20/25		1	1	1					
	I:	40°C/24°C				10	12	12	12	12	11	10	9	
Femperature range	II:	80°C/50°C	Dry, wet concrete			7,5	9	9	9	9	8,5	7,5	6,5	
nre	III:	120°C/72°C		J	[NI/mm2]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
berat	1:	40°C/24°C		[⊤] Rk,ucr	[N/mm²]	7,5	8,5	8,5	8,5					
Гетр	II:	80°C/50°C	flooded bore hole			5,5	6,5	6,5	6,5		lo Perfo			
•	III:	120°C/72°C	1			4,0	5,0	5,0	5,0	Assessed (NPA)				
Charac	cteris	tic bond resist	ance in cracked o	concrete C20/2	:5			l						
	1:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
ange	11:	80°C/50°C	Dry, wet concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
ure ra	III:	120°C/72°C		_	[N]/ma ma 21	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range	l:	40°C/24°C		^τ Rk,cr	[N/mm²]	4,0	4,0	5,5	5,5	No Performance Assessed (NPA)			•	
Temp	II:	80°C/50°C	flooded bore hole			2,5	3,0	4,0	4,0					
•	III:	120°C/72°C	- 11010			2,0	2,5	3,0	3,0				•,	
Redukt	tion f	actor ψ ⁰ sus in	cracked and nor	n-cracked cond	rete C20/25									
	l:	40°C/24°C	Dry, wet					0,73						
Temperature range	II:	80°C/50°C	concrete and flooded bore	Ψ^0 sus	[-]	0,65								
Temp	— III:	120°C/72°C	hole			0,57								
				C25/30					1,	02				
				C30/37					1,	,04				
	sing t	factors for con	crete	C35/45						07				
Ψ_{C}				C40/50 C45/55						08 09				
				C50/60						10				
		one failure		•										
Releva Splittir		arameter							see Ta	ıble C2				
Releva	ınt pa	arameter							see Ta	ıble C2				
		factor				10	I			1.0				
	for dry and wet concrete for flooded bore hole		γ _{inst}	[-]	1,0	<u> </u> 1	,4		1,2	NF	PA			
								, -						
Injecti	ion S	ystem ESSVE	ONE, ESSVE ON	E-ICE for cond	crete									
Perfor Charac			nsion loads under	static and quas	si-static action	า					Anne	x C 3		

Page 19 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

Table C4: Characteristic value	s of shea	ar loads		1	-			1	Ι	
Anchor size threaded rod		M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8, 5.6 and 5.8	V ⁰ Rk,s	[kN]	0,6 • A _s • f _{uk} (or see Table C1)							
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all classes	V ⁰ _{Rk,s}	[kN]	N] 0,5 • A _s • f _{uk} (or see Table C1)							
Partial factor	γMs,V	[-]				see	Table C	:1		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm	•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • '	W _{el} ∙ f _{uk}	(or see	Table C	C1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]	see Table C1							
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]	1,0							
Concrete edge failure										
Effective length of fastener	If	[mm]	$\min(h_{ef}; 12 \cdot d_{nom}) \qquad \qquad \min(h_{ef}; 300)$						300mm)	
Outside diameter of fastener	de diameter of fastener d _{nom} [mm] 8 10 12 16 20 24 27				27	30				
Installation factor	γ _{inst}	[-]	1,0							

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 4

Anchor size internal threaded	l anchor rode			IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20	
Steel failure ¹⁾	ranchor rous			IG-IVIO	10-100	10-11110	10-11112	10-11110	IG-IVI20	
Characteristic tension resistance	e. 5.8	N _{Rk,s}	[kN]	10	17	29	42	76	123	
Steel, strength class	8.8	N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor, strength class 5.8	and 8.8	γMs,N	[-]		l	1	,5			
Characteristic tension resistanc Steel A4 and HCR, Strength cla	e, Stainless	N _{Rk,s}	[kN]	14	26	41	59	110	124	
Partial factor		γ _{Ms,N}	[-]			1,87		L	2,86	
Combined pull-out and concr	ete cone failu		1							
Characteristic bond resistance i	n non-cracked	l concret	te C20/25							
l: 40°C/24°C	Day wet			12	12	12	12	11	9	
II: 80°C/50°C	Dry, wet			9	9	9	9	8,5	6,5	
te 8 III: 120°C/72°C	concrete	_	[N] / 27	6,5	6,5	6,5	6,5	6,5	5,0	
©	<i>-</i>	ાRk,ucr	[N/mm ²]	8,5	8,5	8,5	No Performance Asse			
₩ II: 80°C/50°C	flooded bore			6,5	6,5	6,5			ssessed	
III: 120°C/72°C	hole			5,0	5,0	5,0	(NPA)			
Characteristic bond resistance i	n cracked con	crete C2	20/25		0,0	0,0				
I: 40°C/24°C				5,0	5,5	5,5	5,5	5,5	6,5	
□ II: 80°C/50°C	Dry, wet			3,5	4,0	4,0	4,0	4,0	4,5	
## 8 III: 120°C/72°C	concrete			2,5	3,0	3,0	3,0	3,0	3,5	
amber arm a		1,0.	[N/mm ²]	4,0	5,5	5,5	0,0	0,0	0,0	
E II: 80°C/50°C	flooded bore			3,0	4,0	4,0	No Perfe	ssessec		
III: 120°C/72°C	hole			2,5	3,0	3,0				
Reduktion factor ψ^0 _{sus} in crack	ed and non-cr	acked c	oncrete C] 3,0	3,0				
		acrea e	Toncrete	0,73						
nge III. 80°C/20°C	Dry, wet concrete and	ψ ⁰ sus	[-]	0,65						
E 10000/7000	flooded bore hole	y sus	LJ							
<u>Ф</u> III: 120°С/72°С		0.0	5/00				57			
			5/30				02			
Increasing factors for concrete			0/37				04			
Increasing factors for concrete			5/45				07			
$\Psi_{ extsf{c}}$			0/50				80			
			5/55				09			
Compareta como foilume		<u> </u>	0/60			1,	10			
Concrete cone failure			1			a T	hla CO			
Relevant parameter						see 18	able C2			
Splitting failure			1			000 T	phia CO			
Relevant parameter						see 18	able C2			
Installation factor		1				<u>.</u>	0			
for dry and wet concrete		γ _{inst}	[-]		1 4	1	,2 I	NDA		
for flooded bore hole			'		1,4			NPA		

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.
2) For IG-M20 strength class 50 is valid

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 5

Anchor size for internal thread	ed anch	or rods		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Steel failure without lever arm ¹)			•		•	•		
Characteristic shear resistance,	5.8	V ⁰ Rk,s	[kN]	5	9	15	21	38	61
Steel, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98
Partial factor, strength class 5.8 and 8.8		γ _{Ms,V}	[-]				1,25		
Characteristic shear resistance, Stainless Steel A4 and HCR, Strength class 70 ²⁾		V ⁰ _{Rk,s}	[kN]	7	13	20	30	55	40
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Ductility factor	[-]				1,0				
Steel failure with lever arm ¹⁾									
Characteristic bending moment,	5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	66	167	325
Steel, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519
Partial factor, strength class 5.8 a	and 8.8	γ _{Ms,V}	[-]	1,25					
Characteristic bending moment, Stainless Steel A4 and HCR, Strength class 70 ²⁾		M ⁰ Rk,s	[Nm]	11	26	52	92	233	456
Partial factor		γ _{Ms,V}	[-]			1,56			2,38
Concrete pry-out failure									
Factor		k ₈	[-]				2,0		
Installation factor		γ _{inst}	[-]				1,0		
Concrete edge failure									
Effective length of fastener		I _f	[mm]	[mm] min(h _{ef} ; 12 • d _{nom}) (t				min (h _{ef} ; 300mr	
Outside diameter of fastener	Outside diameter of fastener			10	12	16	20	24	30
Installation factor γ _{inst} [-]							1,0		•
				<u> </u>					

¹⁾ Fastenings (incl. nut and washer) must comply with the appropriate material and property class of the internal threaded rod. The characteristic tension resistance for steel failure is valid for the internal threaded rod and the fastening element.

²⁾ For IG-M20 strength class 50 is valid

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 6

Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure		T.							n				
Characteristic tension resi	stance	N _{Rk,s}	[kN]		1			۹ _s • f _{uk}					
Cross section area		A _s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor		γ _{Ms,N}	[-]					1,4 ²⁾					
Combined pull-out and o													
Characteristic bond resista	ance in non-c	racked cond	rete C20/2										
<u>Ι: 40°C/24°C</u>	Dry, wet			10	12	12	12	12	12	11	10	8,5	
## B	concrete			7,5 5,5	9 6,5	9 6,5	9 6,5	9 6,5	9 6,5	8,0 6,0	7,0 5,0	6,0 4,5	
e an		^τ Rk,ucr	[N/mm ²]	7,5	8,5	8,5	8,5	8,5	,	,		· · · ·	
E II: 80°C/50°C	flooded			5,5	6,5	6,5	6,5	6,5	No Performance Assessed (NPA)				
III: 120°C/72°C	bore hole			4,0	5,0	5,0	5,0	5,0	А	4)			
Characteristic bond resista	ance in crack	ed concrete	C20/25										
υ <u>I: 40°C/24°C</u>	Dry, wet			4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
II: 80°C/50°C	concrete			2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
Berry 11: 40°C/24°C II: 80°C/50°C II: 40°C/24°C II: 80°C/50°C II: 80°C/50°C		τ _{Rk,cr}	[N/mm ²]	2,0 4,0	2,5 4,0	3,0 5,5	3,0 5,5	3,0 5,5	3,0	3,0	3,5	3,5	
⊕ II: 80°C/50°C	flooded	,		2,5	3,0	4,0	4,0	4,0			ormand		
III: 120°C/72°C	bore hole			2,0	2,5	3,0	3,0	3,0	A	ssesse	ed (NPA	4)	
Reduktion factor $\psi^0_{ ext{ sus}}$ in	cracked and	non-cracked	d concrete										
			0,73										
III: 120°C/72°C III: 120°C/72°C	concrete and	Ψ ⁰ sus	[-]					0,65					
E III: 120°C/72°C	III: 120°C/72°C flooded bore hole 0,57												
		C25						1,02					
Increasing factors for cond	crete	C30						1,04 1,07					
Ψ_{C}	Sicio	C40						1,07					
		C45		1,09									
		C50						1,10					
Concrete cone failure		•											
Relevant parameter							see	e Table	C2				
Splitting													
Relevant parameter							see	e Table	C2				
Installation factor			,						_				
for dry and wet concrete for flooded bore hole		γ_{inst}	[-]	1,2		1,4		1	,2	N I I	PA		
¹⁾ f _{uk} shall be taken from th ²⁾ in absence of national re	e specification gulation	ns of reinforci	ing bars										
Injection System ESSVE Performances	ONE, ESSVE	ONE-ICE fo	or concrete	ı						Anne	ex C 7		

Page 23 of European Technical Assessment ETA-18/0617 of 11 December 2019

English translation prepared by DIBt

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			•	•			•	•			
Characteristic shear resistance	V ⁰ Rk,s	[kN]				0,5	0 • A _s •	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm		•									
Characteristic bending moment	M ⁰ Rk,s	[Nm]				1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]			•	•	1,5 ²⁾	•			
Concrete pry-out failure		1	'								
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure	-	-	•								
Effective length of fastener	If	[mm]	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300mm)					mm)			
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γinst	[-]	1,0								

 $[\]stackrel{1)}{\rm f}_{\rm uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under static and quasi-static action	Annex C 8

Table C9: Dis	splacements	s under tension load ¹) (thread	ded rod)						
Anchor size thread	led rod		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked concre	ete C20/25 u	nder static and quasi-	static ac	tion				•			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete C	20/25 under	static and quasi-stati	c action								
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,0	90			0,0	70			
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,2	219			0,1	70			
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255			0,2	245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (threaded rod) Table C10:

Anchor size thread	М8	M10	M12	M16	M20	M24	M27	M30		
Non-cracked concrete C20/25 under static and quasi-static action										
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C	20/25 under	static and quasi-station	caction							
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} &\cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} &\cdot V; \end{split}$$
V: action shear load

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances	Annex C 9
Displacements (threaded rods)	

Table C11: Dis	splacements ι	ınder tension loa	ad ¹⁾ (Intern	al threade	d anchor r	od)		
Anchor size Intern	al threaded ar	nchor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Non-cracked concre	ete C20/25 und	ler static and qua	si-static ac	ction				
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,023	0,026	0,031	0,036	0,041	0,049
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,033	0,037	0,045	0,052	0,060	0,071
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,056	0,063	0,075	0,088	0,100	0,119
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,081	0,090	0,108	0,127	0,145	0,172
Cracked concrete C	20/25 under st	tatic and quasi-st	atic action					
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,090			0,070		
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105			0,105		
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,219			0,170		
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255			0,245		
Temperature range	δ_{No} -factor	[mm/(N/mm²)]	0,219			0,170		
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,255			0,245		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Displacements under shear load¹⁾ (Internal threaded anchor rod) Table C12:

Anchor size Inte	rnal threaded an	chor rod	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20				
Non-cracked and cracked concrete C20/25 under static and quasi-static action												
All temperature	δ_{V0} -factor	[mm/kN]	0,07	0,06	0,06	0,05	0,04	0,04				
ranges	δ _{V∞} -factor	[mm/kN]	0,10	0,09	0,08	0,08	0,06	0,06				

 $^{^{1)}}$ Calculation of the displacement $\delta_{V0} = \delta_{V0}\text{-factor} \ \cdot V; \qquad V\text{: action shear load}$

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} ~\cdot V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} ~\cdot V; \end{split}$$

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances	Annex C 10
Displacements (Internal threaded anchor rod)	

8.06.01-338/19 Z84888.19

Table C13: Displacements under tension load ¹⁾ (rebar)											
Anchor size reinfo	orcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked conc	ete C20/25	under static an	d quasi	-static a	ction						
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
range I: 40°C/24°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range II: 80°C/50°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
range III: 120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25 und	ler static and qu	ıasi-stat	ic action	1						
Temperature	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,0	90	0,070						
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,1	05	0,105						
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	19				0,170			
range II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,2	19				0,170			
range III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

τ: action bond stress for tension

Displacement under shear load (rebar) Table C14:

()											
Anchor size rein	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Non-cracked concrete C20/25 under static and quasi-static action											
All temperature	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	δ _{V∞} - factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete	C20/25 und	der static and qu	ıasi-stat	ic actior	1						
All temperature	δ _{v0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	δ _{V∞} - factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

V: action shear load

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Displacements (rebar)	Annex C 11

 $[\]delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

 $[\]begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \ V; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \ V; \end{split}$

Ancho	r siz	e threaded ro	d			M8	M10	M12	M16	M20	M24	M27	M30
Steel fa													
Characteristic tension resistance N _{Rk,s,eq} [kN]									1,0 •	$N_{Rk,s}$			
Partial	facto	or		γ _{Ms,N}	[-]				see Ta	ıble C1			
			concrete failure	,	•	•							
Charac	teris	stic bond resist	ance in non-cracl	ked and cracke	ed concrete	C20/25	5	1	I	I	I		
	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
ange	II:	80°C/50°C	Dry, wet concrete			1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
ure ra	III:	120°C/72°C		^τ Rk,eq	[N]/21	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
oeratı	l:	40°C/24°C			[N/mm ²]	2,5	2,5	3,7	3,7		•		
Temperature range	II:	80°C/50°C	flooded bore			1,6	1,9	2,7	2,7	No Performance Assessed (NPA)			-
·	III:	120°C/72°C				1,3	1,6	2,0	2,0	7,000000 (11171)			
Redukt	tion f	factor ψ ⁰ sus in	cracked and nor	n-cracked cond	rete C20/25				l	l			
iure	l:	40°C/24°C	Dry, wet			0,73							
Temperature range	II:	80°C/50°C	concrete and flooded bore	ψ^0 sus	[-]	0,65							
Tem	III:	120°C/72°C	hole			0,57							
Increas	sing 1	factors for con	crete ψ _C	C25/30 to C	 50/60	1,0							
Concre	ete c	one failure								,			
		arameter							see Ta	ıble C2			
Splittir	_								T-	-l-l- 00			
		arameter n factor							see Ta	ible C2			
		wet concrete				1,0				1,2			
		bore hole		γ _{inst}	[-]	1,4 NPA						 -Α	

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 12

Steel failure without lever arm Characteristic shear resistance (Seismic C1) V _{Rk,s,eq} [kN] 0,70 ⋅ V ⁰ _{Rk,s} Partial factor γ _{Ms,V} [-] see Table C1 Ductility factor k ₇ [-] 1,0 Steel failure with lever arm Characteristic bending moment M ⁰ _{Rk,s,eq} [Nm] No Performance Assessed (NPA) Concrete pry-out failure Factor k ₈ [-] 2,0 Installation factor γ _{inst} [-] 1,0 Concrete edge failure Effective length of fastener l _f [mm] min(h _{ef} ; 12 ⋅ d _{nom}) min(h _{ef} ; 300) Outside diameter of fastener d _{nom} [mm] 8 10 12 16 20 24 27 27	Table C16: Characteristic v (performance ca		loads เ	ınder s	seismic	action	1				
Characteristic shear resistance (Seismic C1) Partial factor $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steel failure without lever arm						•		•		
Ductility factor k_7 [-] 1,0 Steel failure with lever arm Characteristic bending moment $M^0_{RK,s,eq}$ $[Nm]$ No Performance Assessed (NPA) Concrete pry-out failure Factor k_8 [-] 2,0 Installation factor γ_{inst} [-] 1,0 Concrete edge failure Effective length of fastener l_f $[mm]$ $[m$		V _{Rk,s,eq}	[kN]				0,70	o·V ⁰ Rk	.,s		
Steel failure with lever arm Characteristic bending moment $M^0_{Rk,s,eq}$ $[Nm]_{]}$ No Performance Assessed (NPA) Concrete pry-out failure Factor k_8 $[-]$ $2,0$ Installation factor γ_{inst} $[-]$ $1,0$ Concrete edge failure Effective length of fastener I_f $[mm]_{]}$ $min(h_{ef}; 12 \cdot d_{nom})$ $min(h_{ef}; 300)$ Outside diameter of fastener d_{nom} $[mm]_{]}$ 8 10 12 16 20 24 27	Partial factor	$\gamma_{Ms,V}$	[-]				see	Table C	21		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ductility factor	k ₇	[-]	1,0							
Concrete pry-out failure Factor k_8 [-] 2,0 Installation factor γ_{inst} [-] 1,0 Concrete edge failure Effective length of fastener l_f $l_$	Steel failure with lever arm	<u> </u>	1								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Characteristic bending moment	М ⁰ _{Rk,s,eq}	[Nm			No Pe	rforman	ce Asse	essed (N	IPA)	
Installation factor γ_{inst} [-] 1,0 Concrete edge failure Effective length of fastener $\begin{vmatrix} I_f & \\ I_m & $	Concrete pry-out failure										
Concrete edge failure Effective length of fastener	Factor	k ₈	[-]					2,0			
Effective length of fastener $\begin{vmatrix} I_f & \begin{bmatrix} Imm & min(h_{ef}; 12 \cdot d_{nom}) \\ \end{bmatrix} & min(h_{ef}; 300) \end{vmatrix}$ Outside diameter of fastener $\begin{vmatrix} d_{nom} & \begin{bmatrix} Imm & 8 & 10 & 12 & 16 & 20 & 24 & 27 \\ \end{bmatrix}$	Installation factor	γ _{inst}	[-]					1,0			
Outside diameter of fastener d nom Imm 8 10 12 16 20 24 27	Concrete edge failure	·									
Outside diameter of fastener	Effective length of fastener	I _f	[mm	min(h _{ef} ; 12 • d _{nom}) min(h _{ef} ; 300						300mm)	
Installation factor γ_{inst} [-] 1,0	Outside diameter of fastener	d _{nom}	[mm	m 8 10 12 16 20 24 27						30	
	Installation factor	γinst	[-]	1,0							
Factor for annular gap α_{gap} [-] $0.5 (1.0)^{1)}$	Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0)1)							

¹⁾ Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 13

Table C1		ristic values ance catego		ı loads uı	nder s	eismic	actio	1					
Anchor si	ze reinforcing	bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failu	ire												
Characteri	stic tension resi	stance	N _{Rk,s,eq}	[kN]				1,0	• A _s • 1	f _{uk} 1)			
Cross section area			A _s	[mm ²]	50	79	113	154	201	314	491	616	804
Partial fact	tor	γ _{Ms,N}	[-]					1,4 ²⁾					
Combined pull-out and concrete failure													
	stic bond resista	ance in non-c	racked and o	cracked co									
Temperature range	40°C/24°C 80°C/50°C : 120°C/72°C	Dry, wet concrete			2,5 1,6 1,3	3,1 2,2 1,6	3,7 2,7 2,0	3,7 2,7 2,0	3,7 2,7 2,0	3,7 2,7 2,0	3,8 2,8 2,1	4,5 3,1 2,4	4,5 3,1 2,4
ıperat range I:- ≡	40°C/24°C		τ _{Rk, eq}	[N/mm²]	2,5	2,5	3,7	3,7	3,7				
Tem _l rs = = -	80°C/50°C : 120°C/72°C	flooded bore hole			1,6 1.3	1,9	2,7 2,0	2,7 2,0	2,7	No Performance Assessed (NPA)			
	factor ψ^0_{sus} in	cracked and	non-cracked	d concrete	- , -		_,0	,	,	1			
		Dry, wet			0,73								
Temperature range ≡	80°C/50°C	and	Ψ ⁰ sus	[-]	0,65								
Ten Ten	: 120°C/72°C	flooded bore hole			0,57								
Increasing	factors for cond	rete ψ _C	C25/30 to	C50/60	1,0								
Concrete	cone failure												
Relevant p	arameter							see	Table	C2			
Splitting	<u> </u>		·										
Relevant parameter								see	Table	C2			
Installatio													
	wet concrete		γ_{inst}	[-]	1,2				1	,2			
for flooded	l bore hole		1,11191	.,			1,4				N	PA	

 $[\]stackrel{1)}{\text{f}}_{\text{uk}}$ shall be taken from the specifications of reinforcing bars $\stackrel{2)}{\text{in}}$ in absence of national regulation

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of tension loads under seismic action (performance category C1)	Annex C 14

Table C18: Characteristic va (performance cat		loads u	nder s	eismic	actio	n					
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			1		1	•	•				
Characteristic shear resistance	V _{Rk,s,eq}	[kN]				0,3	5 • A _s	· f _{uk} ²⁾			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾								
Ductility factor	k ₇	[-]	1,0								
Steel failure with lever arm			•								
Characteristic bending moment	M ⁰ _{Rk,s,eq}	[Nm]			No Pe	erforma	ınce As	sessec	(NPA)	į.	
Concrete pry-out failure	·		•								
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of fastener	If	[mm]		mi	n(h _{ef} ; 1	2 · d _{no}	m)		min(h _{ef} ; 300	mm)
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	γ _{inst}	[-]				•	1,0	•			
Factor for annular gap	$\alpha_{\sf gap}$	[-]	0,5 (1,0) ³⁾								

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Characteristic values of shear loads under seismic action (performance category C1)	Annex C 15

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars
2) in absence of national regulation
3) Value in brackets valid for filled annular gab between anchor and clearance hole in the fixture. Use of special filling washer Annex A 3 is required

		is under tension	ii ioau	' (threa	ded rod)						
Anchor size threaded rod				М8	M10	M12	M16	M20	M24	M27	M30	
Cracked and non-cr	racked cond	crete C20/25 und	der seis	mic C1	action	1	•	1	1	'	•	
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]	0,	090	0,070							
I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	0,105 0,105							
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,	219		0,170					
II: 80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,	,255			0,245				
Temperature range	δ_{N0} -factor	[mm/(N/mm²)]		0,219		0,170						
III: 120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]		0,255		0,245						
Table C20: Dis	enlacement	s under tensio	1									
	spiacement	is under tensio	n load '	¹(rebar					ı	1	ı	
Anchor size reinfo	•	is under tensio	n load [*]	⁷ (rebar Ø 10) Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Anchor size reinfo Cracked and non-ci	rcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
	rcing bar		Ø 8 der seis	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Cracked and non-ci	rcing bar	crete C20/25 und	Ø 8 der seis	Ø 10	Ø 12	Ø 14	Ø 16		Ø 25	Ø 28	Ø 32	
Cracked and non-co	rcing bar racked cond δ_{N0} -factor	rete C20/25 und	Ø 8 der seis 0,0 0,1	Ø 10 mic C1	Ø 12	Ø 14	Ø 16	0,070	Ø 25	Ø 28	Ø 32	
Cracked and non-cr Temperature range I: 40°C/24°C	reing bar racked cond δ_{N0} -factor $\delta_{\text{N}\infty}$ -factor	rete C20/25 und [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2	Ø 10 mic C1	Ø 12	Ø 14	Ø 16	0,070	Ø 25	Ø 28	Ø 32	
Cracked and non-cr Temperature range I: 40°C/24°C	rcing bar racked conc δ_{No} -factor δ_{No} -factor δ_{No} -factor	[mm/(N/mm²)] [mm/(N/mm²)] [mm/(N/mm²)]	Ø 8 der seis 0,0 0,1 0,2 0,2	Ø 10 mic C1 090 05 219	Ø 12	Ø 14	Ø 16	0,070 0,105 0,170	Ø 25	Ø 28	Ø 32	

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : action bond stress for tension

Displacements under shear load²⁾ (threaded rod) Table C21:

Anchor size threaded rod			М8	M10	M12	M16	M20	M24	M27	M30
Cracked and non-cracked concrete C20/25 under seismic C1 action										
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

Displacement under shear load¹⁾ (rebar) Table C22:

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and non-cracked concrete C20/25 under seismic C1 action											
All temperature	δ_{V0} -factor	[mm/kN]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
ranges	$\delta_{V\infty}$ -factor	[mm/kN]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

V: action shear load

 $\delta_{V0} = \delta_{V0}\text{-factor} \cdot V;$ $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \cdot V;$

Injection System ESSVE ONE, ESSVE ONE-ICE for concrete	
Performances Displacements under seismic C1 action (threaded rods and rebar)	Annex C 16

 $[\]delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$