

Product description

ESSVE ONE is a styrene-free vinylester resin that is delivered in a 2-component foil tube cartridge system. This high-performance product may be used in combination with a hand-, battery- or pneumatic tool and a static mixer. It was designed especially for the anchoring of threaded rods, reinforcing bars or internal threaded rod sleeves into concrete (also porous and light) as well as masonry. Based on the excellent viscous behaviour the application in hollow masonry material, in combination with a perforated plastic sleeve, is obvious. ESSVE ONE is characterised, by a huge range of applications with an installation temperature range 0°C up to +40°C and an application temperature range -40°C to +120°C after full curing. As well as by high chemical resistance for applications in extreme ambiences e.g. in swimming pools (chlorine) or in closeness to the sea (salt). The wide range of certificates, national and international approvals, allows nearly every application.

Properties and benefits

- European Technical Assessment for use in concrete (cracked and uncracked): ETA-18/0617
- European Technical Assessment for use in masonry: ETA-18/0642
- US-approval acc. to AC 308 for use in concrete (ICC-ES): ESR-2539
- Certificated for drinking water applications acc. to NSF/ANSI Standard 61
- Fire resistance test report: EBB 170019-24
- Installation in water-filled bore holes (e.g. rain water)
- Overhead application
- Low odour
- Suitable for attachment points with small edge- and anchor spacing distances due to an anchoring free of expansion forces (e.g. compared to wedge anchors)
- High chemical resistance
- High bending and pressure strength

Applications samples

Suitable for the fixation of facades, roofs, wood constructions, metal constructions; metal profile, columns, beams, consoles, railings, sanitary devices, cable trays, piping

Handling and storage

Storage: Store in a cold and dark place, storage temperature: from +5°C up to +25 °C

Shelf life: Minimum 3 months for foil tubes.

Cartridge can be reused up to the end of the shelf life by replacing the static mixer or resealing cartridge with the sealing cap

Applications and intended use

Base material:

Cracked and uncracked concrete, light-concrete, porous-concrete, solid masonry, hollow brick, natural stone (Attention! natural stone, can discolour; shall be checked in advance);

Anchor elements:

Threaded rods (zinc plated or hot dip, stainless steel and high corrosion resistance steel), reinforcing bars, internal threaded rods, profiled rod, steel section with undercuts (e.g. perforated section)

Temperature range:

Installation temperature 0°C up to +40°C

Cartridge temperature min. +5°C; optimal +20°C

Base material temperature after full curing: -40°C to +120°C

Mortar properties

Properties	Test Method	Result
UV resistance		Pass
Water tightness	EN 12390-8	0 mm
Temperature stability		120 °C
pH-value		> 12
Density		1,77 kg / dm³
Compressive strength	EN 196-1	100 N / mm²
Flexural strength	EN 196-1	15 N / mm²
E modulus	EN 196-1	14000 N / mm²
Shrinkage		< 0,3 %
Hardness Shore D		90
Electrical resistance	IEC 93	3,6 10°Ω·m
Thermal conductivity	IEC 60093	0,65 W/m·K

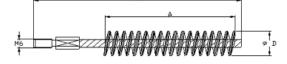
Curing time

Temperature of base material	Gelling- and working time	Full curing time in dry base material	Full curing time in wet base material
0 °C to +4°C	45 Min.	7 h	14 h
+5 °C to +9°C	25 Min.	2 h	4 h
+10 °C to +19°C	15 Min.	80 Min.	160 Min.
+20 °C to 29°C	6 Min.	45 Min.	90 Min.
+30 °C to 34°C	4 Min.	25 Min.	50 Min.
+35 °C to 39°C	2 Min.	20 Min.	40 Min.
+40°C	1,5 Min.	15 Min.	30 Min.

Usage instructions – concrete

	 Drill with hammer drill mode a hole into the base material to the size and embedment depth required by the selected anchor (see page 6). In case of aborted drill hole: the drill hole shall be filled with mortar
or	 Attention! Standing water must be removed before cleaning. 2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (see page 6) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand pump ¹ can only be used in uncracked concrete either for anchor sizes up to bore hole diameter 20 mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.
*******	 ¹⁾ It is permitted to blow bore holes with diameter between 14mm and 20mm and an embedment depth up to 240mm also in cracked concrete with hand pump. 2b. Check brush diameter (page 6) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (see page 6) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.
4x or	2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand pump ¹⁾ can only be used in uncracked concrete either for anchor sizes up to bore hole diameter 20 mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes in cracked and uncracked concrete.
	After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.
	 depth up to 240mm also in cracked concrete with hand pump. 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. After every working interruption longer than the recommended working time as well as for new cartridges, a new static-mixer shall be used.

Usage instructions – concrete


	4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
volle Hübe	5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
	6. Starting from the bottom resp. back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw of the static mixing nozzle as the hole is filled avoids creating air pockets. For embedment larger than 190mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes bigger than 20mm resp. deeper than 240mm a piston plug shall be used. Observe the gel-/ working times given.
	7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.
	8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.
+20°C	9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.
T inst.	10. After full curing, the add-on part can be installed with the max. torque by using a calibrated torque wrench.


Cleaning of the drill hole – concrete

MAC - Hand pump (volume 750 ml) Drill bit diameter (d0); 10 mm to 20 mm Drill hole depth (h0) < 10 ds Only uncracked concrete

Steel brush Drill bit diameter (d0): all diameters CAC - compressed air tool (min. 6 bar) Drill bit diameter (d0): all diameters

Piston plug for overhead or horizontal installation Drill bit diameter (d0): 18 mm to 40 mm

Threaded rod	Rebar	Bore hole- \varnothing	Brush-Ø	Min. brush- $arnothing$	Piston plug
(mm)	(mm)	(mm)	d _ь (mm)	d _{ь,min} (mm)	(No.)
M 8		10,0	12,0	10,5	
M 10	8,0	12,0	14,0	12,5	
M 12	10,0	14,0	16,0	14,5	not necessary
	12,0	16,0	18,0	16,5	· · · · · · · · · · · · · · · · · · ·
M 16	14,0	18,0	20,0	18,5	
	16,0	20,0	22,0	20,5	
M 20	20,0	24,0	26,0	24,5	# 24
M 24		28,0	30,0	28,5	# 28
M 27	25,0	32,0	34,0	32,5	# 32
M 30	28,0	35,0	37,0	35,5	# 35
	32,0	40,0	41,5	40,5	# 38

Setting parameter – concrete

Anchor size (Threaded	rod)			M8	M10	M12	M16	M20	M24	M27	M30
Edge distance		C cr N	[mm]	92	126	152	188	253	291	312	329
Min. edge distance	5,0 x d	$C_{_{\min}}$	[mm]	40	50	60	80	100	120	135	150
Axial distance		S _{cr N}	[mm]	184	252	304	376	506	582	624	658
Min. axial distance	5,0 x d	S _{min}	[mm]	40	50	60	80	100	120	135	150
Embedment depth		h _{ef}	[mm]	80	90	110	125	170	210	250	270
Min. part thickness		h _{min}	[mm]	h _{et}	+ 30 mr	n		l	$h_{ef} + 2d_0$		
Anchor diameter		d	[mm]	8	10	12	16	20	24	27	30
Drill diameter		d _o	[mm]	10	12	14	18	24	28	32	35
Max. installation torque		T _{inst.}	[Nm]	10	20	40	60	120	150	200	250

Anchor size (Rebar)					Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Edge distance		C C C C C C C C C C C C C C C C C C C	[mm]	92	126	152	173	188	253	303	323	341
Min. edge distance	5,0 x d	C _{min}	[mm]	40	50	60	70	80	100	125	140	160
Axial distance		S _{cr N}	[mm]	184	252	304	346	376	506	606	646	682
Min. axial distance	5,0 x d	$S_{_{\min}}$	[mm]	40	50	60	70	80	100	125	140	160
Embedment depth		h _{ef}	[mm]	80	90	110	115	125	170	210	250	270
Min. part thickness		h _{min}	[mm]	h _{ef} +				ł	$n_{ef} + 2d_0$			
Anchor diameter		d	[mm]	8	10	12	14	16	20	25	28	32
Drill diameter		d _o	[mm]	12	14	16	18	20	24	32	35	40
Max. installation torque		T _{inst.}	[Nm]	10	20	40	50	60	120	150	200	250

Performance data – concrete

All data is based on Technical Assessment ETA 18/0617 (published 2018-07-12) and applies for:

- Correct installation according to ETA
- No edge distance and spacing influence. It's advised to use our calculation software ESSVE CS for more complicated design situations
- One typical embedment depth, as specified in the table. Including the minimum base material thickness dependant on this embedment depth
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- Temperature range I (min. base material temp. -40°C, max. long/short term base material temp.: +24°C/40°C)
- Steel failure mode is denoted with *underline italics*
- Undersized hot dip galvanized threaded rods (e.g. 5.8U and 8.8U) have a reduced stress area in accordance with ISO 10684 Annex A. This lowers the steel capacity for M8 and M10, larger sizes are not affected
- The Design Resistance includes the partial safety factor for material γ_M and optimal installation safety factor (γ_{inst}), (e.g. dry/wet concrete rather than water-filled hole)
- The Recommended Loads use an overall partial safety factor for action $\gamma = 1.4$, which is an approximation of Eurocode EN 1990

Performance data – concrete

ESSVE ONE - Typical embedment depth

		M8	M10	M12	M16	M20	M24	M27	M30
Effective embedment depth, h _{ef}	[mm]	80	90	110	125	170	210	240	270
Minimum concrete thickness, h_{min}	[mm]	110	120	140	161	218	266	304	340

ESSVE ONE - Characteristic resistance, uncracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
	5.8	<u>18.0</u>	33.9	49.8	70.6	111.9	153.7	187.8	224.0	
		8.8	20.1	33.9	49.8	70.6	111.9	153.7	187.8	224.0
Tension N_{Rk}	[kN]	A4-70	20.1	33.9	49.8	70.6	111.9	153.7	-	-
		HDG 5.8U	<u>17.0</u>	<u>27.0</u>			Same a	s for 5.8		
		HDG 8.8U	20.1	33.9			Same a	s for 8.8		

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>9.0</u>	<u>15.0</u>	<u>21.0</u>	<u>39.0</u>	<u>61.0</u>	<u>88.0</u>	<u>115.0</u>	<u>140.0</u>
		8.8	<u>15.0</u>	<u>23.0</u>	<u>34.0</u>	<u>63.0</u>	<u>98.0</u>	<u>141.0</u>	<u>184.0</u>	<u>224.0</u>
Shear V_{Rk}	[kN]	A4-70	<u>13.0</u>	<u>20.0</u>	<u>30.0</u>	<u>55.0</u>	<u>86.0</u>	<u>124.0</u>	-	-
		HDG 5.8U	<u>8.0</u>	<u>13.0</u>			Same a	s for 5.8		
		HDG 8.8U	<u>14.0</u>	<u>22.0</u>			Same as	s for 8.8		

ESSVE ONE - Characteristic resistance, cracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	8.0	14.1	22.8	34.6	58.7	87.1	132.3	159.7
		8.8	8.0	14.1	22.8	34.6	58.7	87.1	132.3	159.7
Tension N_{Rk}	[kN]	A4-70	8.0	14.1	22.8	34.6	58.7	87.1	-	-
		HDG 5.8U	8.0	14.1			Same a	s for 5.8		
		HDG 8.8U	8.0	14.1			Same a	s for 8.8		
			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>9.0</u>	<u>15.0</u>	<u>21.0</u>	<u>39.0</u>	<u>61.0</u>	<u>88.0</u>	<u>115.0</u>	<u>140.0</u>
		8.8	16.1	<u>23.0</u>	<u>34.0</u>	69.1	117.5	<u>141.0</u>	<u>184.0</u>	<u>224.0</u>
Shear V_{Rk}	[kN]	A4-70	<u>13.0</u>	<u>20.0</u>	<u>30.0</u>	<u>55.0</u>	<u>86.0</u>	<u>124.0</u>	-	-
		HDG 5.8U	<u>8.0</u>	<u>13.0</u>			Same a	s for 5.8		
		HDG 8.8U	16.1	<u>22.0</u>			Same a	s for 8.8		

Performance data – concrete

ESSVE ONE - Typical embedment depth

		M8	M10	M12	M16	M20	M24	M27	M30
Effective embedment depth, hef	[mm]	80	90	110	125	170	210	240	270
Minimum concrete thickness, h_{min}	[mm]	110	120	140	161	218	266	304	340

ESSVE ONE - Design resistance, non-cracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>12.0</u>	18.8	27.6	39.2	62.2	85.4	104.3	124.5
		8.8	13.4	18.8	27.6	39.2	62.2	85.4	104.3	124.5
Tension N_{Rd}	[kN]	A4-70	13.4	18.8	27.6	39.2	62.2	85.4	-	-
		HDG 5.8U	<u>11.3</u>	<u>18.0</u>	Same as for 5.8					
		HDG 8.8U	13.4	18.8			Same a	s for 8.8		

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>7.2</u>	<u>12.0</u>	<u>16.8</u>	<u>31.2</u>	<u>48.8</u>	<u>70.4</u>	<u>92.0</u>	<u>112.0</u>
		8.8	<u>12.0</u>	<u>18.4</u>	<u>27.2</u>	<u>50.4</u>	<u>78.4</u>	<u>112.8</u>	<u>147.2</u>	<u>179.2</u>
Shear V_{Rd}	[kN]	A4-70	<u>8.3</u>	<u>12.8</u>	<u>19.2</u>	<u>35.3</u>	<u>55.1</u>	<u>79.5</u>	-	-
		HDG 5.8U	<u>6.4</u>	<u>10.4</u>	Same as for 5.8					
		HDG 8.8U	<u>11.2</u>	<u>17.6</u>			Same as	s for 8.8		

ESSVE ONE - Design resistance, cracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	5.4	7.9	12.7	19.2	32.6	48.4	73.5	88.7
		8.8	5.4	7.9	12.7	19.2	32.6	48.4	73.5	88.7
Tension N_{Rd}	[kN]	A4-70	5.4	7.9	12.7	19.2	32.6	48.4	-	-
		HDG 5.8U	5.4	7.9			Same a	s for 5.8		
		HDG 8.8U	5.4	7.9			Same a	s for 8.8		
			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>7.2</u>	<u>12.0</u>	<u>16.8</u>	<u>31.2</u>	<u>48.8</u>	<u>70.4</u>	<u>92.0</u>	<u>112.0</u>
		8.8	10.7	<u>18.4</u>	<u>27.2</u>	46.1	78.3	<u>112.8</u>	<u>147.2</u>	<u>179.2</u>
Shear V_{Rd}	[kN]	A4-70	<u>8.3</u>	<u>12.8</u>	<u>19.2</u>	<u>35.3</u>	<u>55.1</u>	<u>79.5</u>	-	-
		HDG 5.8U	<u>6.4</u>	<u>10.4</u>			Same a	s for 5.8		
		HDG 8.8U	10.7	<u>17.6</u>			Same a	s for 8.8		

Performance data – concrete

ESSVE ONE - Typical embedment depth

		M8	M10	M12	M16	M20	M24	M27	M30
Effective embedment depth, h _{ef}	[mm]	80	90	110	125	170	210	240	270
Minimum concrete thickness, h_{min}	[mm]	110	120	140	161	218	266	304	340

ESSVE ONE - Recommended loads, non-cracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>870</u>	1370	2010	2855	4525	6215	7595	9065
		8.8	975	1370	2010	2855	4525	6215	7595	9065
Tension N_{rec}	[kg]	A4-70	975	1370	2010	2855	4525	6215	-	-
		HDG 5.8U	<u>825</u>	<u>1310</u>	Same as for 5.8					
		HDG 8.8U	975	1370			Same a	s for 8.8		

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>520</u>	<u>870</u>	<u>1220</u>	<u>2270</u>	<u>3550</u>	<u>5125</u>	<u>6700</u>	<u>8155</u>
		8.8	<u>870</u>	<u>1340</u>	<u>1980</u>	<u>3670</u>	<u>5710</u>	<u>8215</u>	<u>10720</u>	<u>13050</u>
Shear V_{rec}	[kg]	A4-70	<u>605</u>	<u>930</u>	<u>1400</u>	<u>2565</u>	<u>4015</u>	<u>5785</u>	-	-
		HDG 5.8U	<u>465</u>	<u>755</u>	Same as for 5.8					
		HDG 8.8U	<u>815</u>	<u>1280</u>			Same a	s for 8.8		

ESSVE ONE - Recommended loads, cracked concrete, typical embedment depth

			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	390	570	920	1395	2375	3520	5350	6460
		8.8	390	570	920	1395	2375	3520	5350	6460
Tension N _{rec}	[kg]	A4-70	390	570	920	1395	2375	3520	-	-
		HDG 5.8U	390	570			Same a	s for 5.8		
		HDG 8.8U	390	570			Same a	s for 8.8		
			M8	M10	M12	M16	M20	M24	M27	M30
		5.8	<u>520</u>	<u>870</u>	<u>1220</u>	<u>2270</u>	<u>3550</u>	<u>5125</u>	<u>6700</u>	<u>8155</u>
		8.8	780	<u>1340</u>	<u>1980</u>	3355	5705	<u>8215</u>	<u>10720</u>	<u>13050</u>
Shear V_{rec}	[kg]	A4-70	<u>605</u>	<u>930</u>	<u>1400</u>	<u>2565</u>	<u>4015</u>	<u>5785</u>	-	-
		HDG 5.8U	<u>465</u>	<u>755</u>			Same a	s for 5.8		
		HDG 8.8U	780	<u>1280</u>	Same as for 8.8					

Fire resistance – concrete

The table shows the decisive tensile fire resistance $N_{Rk,fi}$ of a one side fire exposure in uncracked concrete (minimum strength class C20/25). The tensile fire resistance $N_{Rk,fi}$ apply for a single anchor under tensile load with an edge distance greater than $c_{cr} = 2 h_{ef}$ and a minimum spacing distance of $s = 2 c_{cr} = 4 h_{ef}$ to the adjacent anchor. Adhering to these edge and spacing distances ensures that a concrete cone failure is not decisive.

The resistance is applicable for anchor rods with a strength class of at least 5.8 (EN 1993-1-8:2005 +AC:2009). The same fire resistances can be assumed for threaded rods of stainless steel (A4) and high corrosion resistant steel (HCR) with a strength class of 70 (EN ISO 3506-1:2009).

If the edge distance c is chosen in a way, that steel failure / pull-out is determined in the fire design, the following resistance values can be also applied on anchors under shear load.

Anchors Size	M8	M10	M12	M16	M20	M24	M27	M30
Minimum embedment depth h _{ef,min} [mm]	≥ 80	≥ 90	≥ 110	≥ 125	≥ 170	≥ 210	≥ 250	≥ 280
Fire resistance duration t_{u} [min]					istance [kN]			
R30	1,6	2,6	3,4	6,2	9,8	14,0	18,3	22,3
R60	1,1	1,8	2,6	4,8	7,5	10,8	14,1	17,2
R90	0,6	0,9	1,8	3,4	5,3	7,6	9,9	12,1
R120	0,3	0,5	1,4	2,7	4,2	6,0	7,9	9,6

ESSVE ONE – Fire resistance $N_{Rk,fi}$ in uncracked C20/25 concrete (Test report EBB 170019-24)

Setting data – masonry

ESSVE ONE can also be used for anchorages in masonry, both hollow and solid bricks. For application in hollow bricks perforated sleeves need to be used.

solid bricks				M10	M12	M16	IG-M6	IG-M8	IG-M10
nominal drill hole diameter	d_{o}	[mm]	10	12	14	18	10	12	16
embedment depth	h _{ef}	[mm]	80	90	100	100	90	100	100
bore hole depth	h _o	[mm]	80	90	100	100	90	100	100
diameter of clearance hole in fixture	d_{f}	[mm]	9	12	14	18	7	9	12
diameter of steel brush	d _b ≥	[mm]	12	14	16	20	12	14	18

hollow and solid bricks	hollow and solid bricks			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
perforated sleeve			12x80	16x85 16x130 16x200	16x85 16x130 16x200	20x85 20x130 20x200	20x85 20x130 20x200	16x85 16x130 16x200	20x85 20x130 20x200	20x85 20x130 20x200
nominal drill hole diameter	d _o	[mm]	12	16	16	20	20	16	20	20
embedment depth	h _{ef}	[mm]	80	85 130 200						
bore hole depth	h _o	[mm]	85	90 135 205						
diameter of clearance hole in fixture	d _f	[mm]	9	9	12	14	18	7	9	12
diameter of steel brush	d _b ≥	[mm]	14	18	18	22	22	18	22	22

Performance data – masonry

The technical data sheet contains a selection of the most common masonry bricks, more bricks can be found in the masonry ETA.

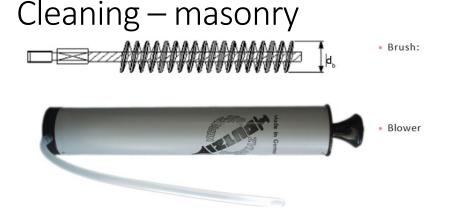
It is also possible to use the chemical anchor for stones not found in the ETA, but then construction site tests are necessary to obtain a load capacity, the results can be compared with similar bricks from the ETA, contact our technical support for assistance.

Common bricks from the masonry ETA:

Туре	Product	Dimensions l x b x h [mm]	Compressive strength [N/mm ²]	Density [kg/dm³]	Producer
autoclaved aerated concrete AAC	5	≥ 499 x 240 x 249	≥ 6	≥ 0,6	e.g. Porrit (D)
solid calcium silica brick KS-NF		≥ 240 x 115 x 71	≥ 10	≥ 2,0	e.g. Wemding (D)
solid light weight concrete brick		≥ 300 x 123 x 248	≥ 2	≥ 0,6	e.g. Bisotherm (D)
solid clay brick Mz-1DF		≥ 240 x 115 x 55	≥ 10	≥ 1,6	e.g. Unipor (D)

Installation instructions – solid masonry

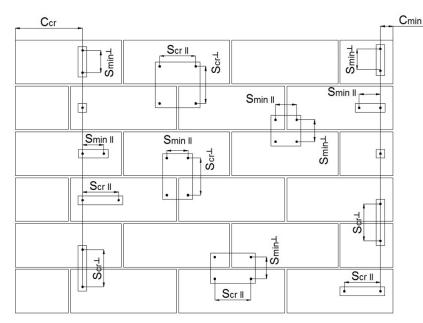
Preparation of car	rtridge
min. 3 full stroke	 Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used. Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube
40	anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
Installation in soli	d masonry (without sleeve)
	3. Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drilling method according to Annex C4-C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by theselected anchor. In case of aborted drill hole the drill hole shall be filled with mortar.
E	4. Blow out from the bottom of the bore hole two times. Attach the brush to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.
	5. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to min two-thirds with adhesive. Slowly withdraw the static mixing nozzle will avoid creating air pockets. Observe the gel-/ working times given in Table B4.
her	6. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.
	 7. Be sure that the anular gap is fully filled with mortar. If no excess mortar is visible at the top of the hole, the application has to be renewed. 8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).
	9. After full curing, the fixture can be installed with up to the max. installation tor- que (see parameters of brick Annex C4 to Annex C45) by using a calibrated torque wrench.



Installation instructions – hollow masonry

Installation in solid and hollow masonry (with sleeve)

	 3. Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 - C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor. 							
	4. Blow out from the bottom of the bore hole two times. Attach the brush to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.							
	 Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve. 							
	6. Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. Observe the gel-/ working times given in Table B4.							
	7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.							
+20°C	8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).							
	9. After full curing, the fixture can be installed with up to the max. installation tor- que (See parameters of brick Annex C4 to Annex C45) by using a calibrated torque wrench.							



Calculation of recommended loads

The recommended loads are only valid under the following conditions. For a more detailed design see ETA:

- dry environment
- spacing $s \ge s_{cr}$
- edge distance $c \ge c_{cr}$
- masonry mortar of strength class M2,5 to M9
- no prestressing force on the wall
- visible joints
- vertical joints are filled with mortar
- steel strength of anchor rod 5.8 or higher
- the partial safety factors for material and load are already considered
- no interaction of tension and shear loads considered

16

Recommended loads in masonry

autocalved aerated concrete AAC	ī	≥ 499 :	mensions 499 x 249 x 240 mm		compressive strength ≥ 6 N/mm²			density ≥ 0,6 kg/dm³		produce n ³ e.g. Porit	
				M8	M10	M1	2 M16	IG M6	IG M8	IG M10	
perforated sleeve					-	-	-	-	-	-	-
anchorage depth		ł	۱ _{ef}	mm	80	90	100) 100	90	100	100
minimum wall thickness	;	h	min	mm				240	1		
installation torque		Т		Nm	m 2						
drilling method		·			hammer drilling						
critical edge distance		C	cr	mm	120	135	150) 150	135	150	150
critical axial distance pa	rallel to horizontal joint	S	cr,ll	mm	240	270	300	300	270	300	300
critical axial distance per	pendicular to horizontal jo		cr,T	mm	240	270	300	300	270	300	300
minimal edge distance ²)	C	min	mm	75						
			mm	100							
recommended tension load ¹⁾			zul	kN	0,89	1,43	1,7	9 2,32	1,43	1,79	2,32
recommended vertical sh	near load 1)	V	vert.	kN	2,14	3,03	3,57	3,57	1,79	3,21	3,57
recommended horizontal shear load ¹⁾			hori.	kN	1,29	1,68	2,13	2,32	1,44	1,88	2,01
¹⁾ Conditions and assumptions for the recommended loads, see page 16											

Recommended loads in masonry

	mensi 40 x 11		st	n press rengtl 0 N/mr	า	den ≥ 2,0 k	s ity g/dm	³ e.g	produ . Wemd		
usage without perforated sleeve			M8	M10	M1	2 M:	16	IG M6	IG M8	IG M10	
perforated sleeve			-	-	-	-		-	-	-	
anchorage depth	h _{ef}	mm	80	90	10	0 10	0	90	100	100	
minimum wall thickness	h _{min}	mm	115	240	24	0 24	0	240	240	240	
installation torque	T _{inst}	Nm				2	2		I		
drilling method					h	ammei	r drilli	ng			
critical edge distance	C _{cr}	mm	120	135	15	0 15	0	135	150	150	
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240	270	30	0 30	0	270	300	300	
critical axial distance perpendicular to horizontal joint	S _{cr,T}	mm	240				270	300	300		
minimal edge distance ²⁾	C _{min} mm				60						
minimal axial distance ²⁾	S _{min}	mm	120								
recommended tension load ¹⁾	N _{zul}	kN	N 1,53 1,53 1,53 1,43 1,53 1,5				1,53	1,43			
recommended vertical shear load ¹⁾					1,14						
recommended horizontal shear load ¹⁾	V _{hori.}	kN	1,14								
usage with perforated sleeve	÷	÷	M8	M8	M10	M12	M16	IG M6	IG M8	IG M10	
perforated sleeve			12	16	16	20	20	16	20	20	
anchorage depth	h _{ef}	mm	80	80 85; 130; 200							
minimum wall thickness	h _{min}	mm	115			h _{ef}	+ 30r	nm			
installation torque	T _{inst}	Nm		2							
drilling method				hammer drilling							
critical edge distance	C _{cr}	mm	120								
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240								
critical axial distance perpendicular to horizontal joint	S _{cr,T}	mm	240 255								
minimal edge distance ²⁾	C _{min}	mm				6	0				
minimal axial distance ²⁾	S _{min}	mm				12	20				
recommended tension load ¹⁾	N _{zul}	kN	1,53	1,43	1,43	1,14	1,14	1,43	1,14	1,14	
recommended vertical shear load ¹⁾	V _{vert.}	kN		1		1,:	14				
recommended horizontal shear load ¹⁾	V _{hori.}	kN	kN 1,14								

¹⁾Conditions and assumptions for the recommended loads, see page 16

Recommended loads in masonry

solid light weight concrete brick LAC		imensi 300 x 1 248		S	npress trengt 2 N/mi	h		e nsity kg/d		produ e.g. Bisot (D)	herm
usage without perforated sleeve				M8	M1	0 M	12	V16	IG M6	IG M8	IG M10
perforated sleeve				-	-	-		-	-	-	-
anchorage depth		h _{ef}	mm	80	90	10	00	100	90	100	100
minimum wall thickness		h _{min}	mm				3	300			1
installation torque		T	Nm					2			
drilling method			1			I	namm	er dri	lling		
critical edge distance		C _{cr}	mm	120	135	5 15	50	150	135	150	150
critical axial distance parall	el to horizontal joint	S _{cr,II}	mm	240	270) 30	00 3	300	270	300	300
critical axial distance perpe	ndicular to horizontal join	S _{cr,T}	mm	240	270) 30	00 3	300	270	300	300
minimal edge distance ²⁾		C _{min}	mm	60							
minimal axial distance ²⁾ S _{mi}			mm	120							
recommended tension load	1)	N _{zul}	kN	0,86	0,8	6 1,0	00 C),86	0,86	1,00	0,86
recommended vertical shear	r load 1)	V _{vert.}	kN	0,86						1	
recommended horizontal sh	ear load 1)	V _{hori.}	kN	0,60	0,78	0,8	6 0,	,86	0,67	0,86	0,86
usage with perforated sleev	/e			M8	M8	M10	M12	M16	5 IG M6	IG M8	IG M10
perforated sleeve				12	16	16	20	20	16	20	20
anchorage depth		h _{ef}	mm	80	80 85; 130; 200					1	
minimum wall thickness		h	mm		300						
installation torque		T _{inst}	Nm		2						
drilling method					hammer drilling						
critical edge distance		C _{cr}	mm	120				127	,5		
critical axial distance parall	el to horizontal joint	S _{cr,II}	mm	240	255						
critical axial distance perpe	ndicular to horizontal join						25	5			
minimal edge distance ²⁾			mm	1				60			
minimal axial distance ²⁾		S _{min}	mm				-	120			
recommended tension load	1)	N _{zul}	kN	0,71	0,86	0,86	0,71	0,71	L 0,8	5 0,71	0,71
recommended vertical shear	r load 1)	V _{vert.}	kN	1			0) <i>,</i> 86	1	1	а
recommended horizontal sh	ear load 1)	V _{hori.}	kN	0,67	0,81	0,81	0,86	0,86	5 0,81	0,86	0,86

¹⁾ Conditions and assumptions for the recommended loads, see page 16

Recommended loads in masonry

	mensions 40 x 115 x 55 and the strength ≥ 10 N/mm ²		า	density ≥ 1,6 kg/dm³		^з е	producer e.g. Unipor (D)			
usage without perforated sleeve			M8	M10	M1	2 N	116	IG M6	IG M8	IG M10
perforated sleeve			-	-	-		-	-	-	-
anchorage depth	h _{ef}	mm	80	90	10	0 1	00	90	100	100
minimum wall thickness	h _{min}	mm	115	240	24	0 2	40	240	240	240
installation torque	T _{inst}	Nm			1		14		1 1	
drilling method		1			h	amme	er drilli	ng		
critical edge distance	C _{cr}	mm	120	135	15	0 1	50	135	150	150
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240	270	30	0 3	00	270	300	300
critical axial distance perpendicular to horizontal joint	S _{cr,T}	mm	240	270	30	0 3	00	270	300	300
minimal edge distance ²⁾	C _{min}	mm				6	50			
minimal axial distance ²⁾	S _{min}	mm	120							
recommended tension load ¹⁾	N _{zul}	kN	1,29	1,57	1,7	1 1	,71	1,57	1,71	1,71
recommended vertical shear load ¹⁾	V _{vert.}	kN	1,43	1,43	1,43	2,2	29 1,	,43	1,43	2,29
recommended horizontal shear load ¹⁾	V _{hori.}	kN	1,43							
usage with perforated sleeve			M8	M8	M10	M12	M16	IG M6	IG M8	IG M10
perforated sleeve			12	16	16	20	20	16	20	20
anchorage depth	h _{ef}	mm	80	85; 130; 200						
minimum wall thickness	h _{min}	mm	115			h	_{ef} + 30n	nm		
installation torque	T _{inst}	Nm					14			
drilling method				hammer drilling						
critical edge distance	C _{cr}	mm	120				127,5			
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240							
critical axial distance perpendicular to horizontal joint	S _{cr,T}	mm	240 255							
minimal edge distance ²⁾	C _{min}	mm				6	50			
minimal axial distance ²⁾	S _{min}	mm	ו 120							
recommended tension load ¹⁾	N _{zul}	kN	1,29 1,43							
recommended vertical shear load ¹⁾	V _{vert.}	kN	1,43 1,43							
recommended horizontal shear load ¹⁾	V _{hori.}	kN				1	,43			

 $^{\scriptscriptstyle 1)}$ Conditions and assumptions for the recommended loads, see page 16

Chemical resistance

Chemical Agent	Concentration	Resistant	Not Resistant
Accumulator acid		\checkmark	
Acetic acid	40		√
Acetic acid	10	\checkmark	
Acetone	10		√
Ammonia, aqueous solution	5	\checkmark	
Aniline	100		√
Beer		\checkmark	
Benzene (kp 100-140°F)	100	\checkmark	
Benzol	100		√
Boric Acid, aqueous solution		\checkmark	
Calcium carbonate, suspended in water	all	\checkmark	
Calcium chloride, suspended in water		√	
Calcium hydroxide, suspended in water		\checkmark	
Carbon tetrachloride	100	\checkmark	
Caustic soda solution	10	\checkmark	
Citric acid	all	\checkmark	
Chlorine water, swimming pool	all	\checkmark	
Diesel oil	100	\checkmark	
Ethyl alcohol, aqueous solution	50		√
Formic acid	100		
Formaldehyde, aqueous solution	30	\checkmark	
Freon	50	· · · · · · · · · · · · · · · · · · ·	
Fuel Oil		\checkmark	
Gasoline (premium grade)	100	\checkmark	
Glycol (Ethylene glycol)	100	\checkmark	
Hydraulic fluid	conc.	\checkmark	
Hydrochloric acid (Muriatic Acid)	conc.		√
Hydrogen peroxide	30		
Isopropyl alcohol	100		1
Lactic acid	all	\checkmark	
Linseed oil	100	\checkmark	
Lubricating oil	100	 ✓	
Magnesium chloride, aqueous solution	all	\checkmark	
Methanol	100		√
Motor oil (SAE 20 W-50)	100	\checkmark	•
Nitric acid	100		√
Oleic acid	100	√	•
Perchloroethylene	100	✓ ✓	
Petroleum	100	✓ ✓	
Petroleum Phenol, aqueous solution	8	v	√
Phenol, aqueous solution Phosphoric acid	85	√	¥
•		✓ ✓	
Potash lye (Potassium hydroxide)	10		
Potassium carbonate, aqueous solution	all	\checkmark	
Potassium chlorite, aqueous solution	all	\checkmark	
Potassium nitrate, aqueous solution	all	\checkmark	

Continued on the next page

Chemical resistance, continued

Chemical Agent	Concentration	Resistant	Not Resistant
Sea water, salty	all	\checkmark	
Sodium carbonate	all	\checkmark	
Sodium Chloride, aqueous solution	all	\checkmark	
Sodium phosphate, aqueous solution	all	\checkmark	
Sodium silicate	all	\checkmark	
Standard Benzine	100	\checkmark	
Sulfuric acid	10	\checkmark	
Sulfuric acid	70		√
Tartaric acid	all	\checkmark	
Tetrachloroethylene	100	\checkmark	
Toluene			√
Trichloroethylene	100		√
Turpentine	100	\checkmark	

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).